
Oracle® Application Server Containers for J2EE
Stand Alone User’s Guide

10g (9.0.4)

Part No. B10323-01

September 2003

Oracle Application Server Containers for J2EE Stand Alone User’s Guide, 10g (9.0.4)

Part No. B10323-01

Copyright © 2002, 2003 Oracle Corporation. All rights reserved.

Primary Author: Sheryl Maring

Contributing Author: Brian Wright, Timothy Smith

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i and SQL*Plus are trademarks or registered trademarks of
Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface.. xi

1 Configuration and Deployment

Introduction to OC4J Standalone .. 1-2
OC4J Installation .. 1-3

Requirements .. 1-3
Basic Installation ... 1-3
Testing the Default Configuration ... 1-4

Starting and Stopping OC4J ... 1-5
Starting OC4J... 1-5
Administering OC4J ... 1-6
Shutting Down OC4J.. 1-7
HTTP and RMI Communication .. 1-8
Quick Start for JSPs and Servlets.. 1-8

Creating the Development Directory.. 1-9
Configuring the FAQ Application Demo... 1-11

Environment Setup for FAQ Demo ... 1-12
OC4J System Configuration for FAQ Demo... 1-12
Deploy the FAQ Demo .. 1-14
Deployment Details Explained... 1-16

Deploying Applications .. 1-19
Archive Application into an EAR File ... 1-19
Deployment In a Production Environment Using ADMIN.JAR... 1-20
Deploy your Application Manually in a Development Environment................................ 1-22
Verifying Deployment ... 1-23

Undeploying Web Applications .. 1-23
iii

2 Advanced Configuration, Development, and Deployment

Overview of OC4J and J2EE XML Files .. 2-2
XML Configuration File Overview .. 2-2
XML File Interrelationships... 2-6

What Happens When You Deploy? ... 2-8
Sharing Libraries... 2-9
Manually Adding Applications in a Development Environment .. 2-10

Configuring a Listener ... 2-10
Configuring J2EE Applications... 2-11

Building and Deploying Within a Directory... 2-12
OC4J Automatic Deployment for Applications .. 2-15
Changing XML Files After Deployment .. 2-16
Designating a Parent of Your Application ... 2-17
Developing Startup and Shutdown Classes .. 2-18

OC4J Startup Classes.. 2-18
OC4J Shutdown Classes... 2-21

Setting Performance Options ... 2-21
Performance Command-Line Options .. 2-22
Thread Pool Settings... 2-23
Statement Caching .. 2-26
Task Manager Granularity .. 2-26

Enabling OC4J Logging ... 2-27
Viewing OC4J System and Application Log Messages... 2-27
Redirecting Standard Out and Standard Error .. 2-31

OC4J Debugging ... 2-31
Servlet Debugging Example.. 2-34

3 Data Sources Primer

Introduction ... 3-2
Definition of Data Sources ... 3-2
Retrieving a Connection From a Data Source ... 3-4

4 Servlet Primer

A Brief Overview of Servlet Technology ... 4-2
iv

What Is a Servlet? ... 4-2
Servlet Portability ... 4-3
The Servlet Container... 4-3
 Request and Response Objects .. 4-4
Learning More About Servlets ... 4-5

Running a Simple Servlet ... 4-5
Create the Hello World Servlet... 4-5
Deploy the Hello World Servlet ... 4-6
Run the Hello World Servlet... 4-7
Automatic Compilation ... 4-7

Running a Data-Access Servlet .. 4-8
Create the HTML Form ... 4-8
Create the GetEmpInfo Servlet ... 4-9
Deploy GetEmpInfo and the HTML Page .. 4-12
Run GetEmpInfo... 4-13

5 JSP Primer

A Brief Overview of JavaServer Pages Technology ... 5-2
What Is JavaServer Pages Technology?... 5-2
JSP Translation and Runtime Flow .. 5-3
Key JSP Advantages ... 5-4
Overview of Oracle Value-Added Features for JSP Pages ... 5-5

Running a Simple JSP Page .. 5-6
Create and Deploy welcomeuser.jsp ... 5-6
Run welcomeuser.jsp ... 5-6

Running a JSP Page That Invokes a JavaBean .. 5-7
Create the JSP: usebean.jsp.. 5-7
Create the JavaBean: NameBean.java .. 5-9
Deploy usebean.jsp and Namebean.java .. 5-9
Run usebean.jsp .. 5-10

Running a JSP Page That Uses Custom Tags .. 5-10
Create the JSP Page: sqltagquery.jsp.. 5-11
Files for Tag Library Support ... 5-12
Deploy sqltagquery.jsp .. 5-13
Run sqltagquery.jsp.. 5-13
v

6 EJB Primer

Developing EJBs ... 6-2
Creating the Development Directory... 6-2
Implementing the Enterprise JavaBeans ... 6-3
Accessing the EJB.. 6-9
Creating the Deployment Descriptor... 6-18
Archiving the EJB Application.. 6-20

Preparing the EJB Application for Assembly.. 6-20
Modifying Application.xml... 6-20
Creating the EAR File... 6-22

Deploying the Enterprise Application to OC4J .. 6-22
Using ADMIN.JAR to Modify SERVER.XML .. 6-22
Updating SERVER.XML Manually .. 6-23
Verifying Deployment ... 6-24

7 Security

Overview of Security Functions... 7-2
Authentication ... 7-3

Specifying Users and Groups.. 7-3
Authenticating HTTP Clients.. 7-5
Authenticating EJB Clients .. 7-5

Authorization ... 7-8
Specifying Logical Roles in a J2EE Application ... 7-8
Mapping Logical Roles to Users and Groups... 7-9

Plugging In a User Manager ... 7-11
Using the JAZNUserManager Class .. 7-12
Using the XMLUserManager Class.. 7-14
Creating Your Own User Manager .. 7-15

Confidentiality Through SSL ... 7-19
Overview of Using SSL for OC4J Standalone... 7-19
Configuration of OC4J for SSL.. 7-21
HTTPS Common Problems and Solutions .. 7-28
vi

A Additional Information

Description of XML File Contents... A-2
OC4J Configuration XML Files... A-2
J2EE Deployment XML Files... A-5

Elements in the server.xml File .. A-8
Configure OC4J ... A-8
Reference Other Configuration Files ... A-8

Elements in the application.xml File .. A-18
Elements in the orion-application.xml File ... A-20
Elements in the application-client.xml File ... A-28
Elements in the orion-application-client.xml File.. A-31
Standalone OC4J Command-Line Options and Properties.. A-33

Options for the OC4J Server JAR ... A-33
Options for the OC4J Administration Management JAR ... A-34

OC4J System Properties... A-44
Configuration and Deployment Examples .. A-49

J2EE Application XML Configuration Example .. A-49

B Third Party Licenses

Third-Party Licenses .. B-2
Apache HTTP Server.. B-2
Apache JServ ... B-3

Index
vii

viii

ix

Send Us Your Comments

Oracle Application Server Containers for J2EE Stand Alone User’s Guide, 10g (9.0.4)

Part No. B10323-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail—appserverdocs_us@oracle.com
■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

x

xi

Preface

This preface introduces you to the Oracle Application Server Containers for J2EE Stand
Alone User’s Guide, discussing the intended audience, structure, and conventions of
this document. It also provides a list of related Oracle documents.

Intended Audience
This manual is intended for anyone who is interested in using Oracle Application
Server Containers for J2EE (OC4J) in standalone mode, assuming you have basic
knowledge of the following:

■ Java and J2EE

■ XML

■ JDBC

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

 http://www.oracle.com/accessibility/

xii

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Structure
The Oracle Application Server Containers for J2EE Stand Alone User’s Guide contains
the following chapters and appendices:

Chapter 1, "Configuration and Deployment"
This chapter discusses how to install OC4J, how to configure the FAQ application,
the popular J2EE demo application from Sun Microsystems, and how to deploy a
Web application.

Chapter 2, "Advanced Configuration, Development, and Deployment"
This chapter covers advanced OC4J information. It includes an overview of OC4J
XML configuration files, how they relate to each other, what happens when you
deploy an application, some tips on manual XML configuration file editing for
applications, when OC4J automatic deployment for applications occurs, and
building and deploying within a directory.

Chapter 3, "Data Sources Primer"
This chapter documents how to use data sources and the JDBC driver.

Chapter 4, "Servlet Primer"
This chapter instructs how to create and use a servlet in OC4J.

Chapter 5, "JSP Primer"
This chapter instructs how to create and use a JSP page in OC4J.

xiii

Chapter 6, "EJB Primer"
This chapter instructs how to create and use an EJB in OC4J.

Chapter 7, "Security"
This chapter presents an overview of security features. It describes how to configure
authorization and authentication for security.

Appendix A, "Additional Information"
This appendix describes the elements of the server XML configuration files, OC4J
command-line tool options, and provides configuration and deployment examples.

Appendix B, "Third Party Licenses"

This appendix lists the Java plug-in partners, third party tool support and third
party licences.

Related Documents
For more information on OC4J, see the following documentation available from
other OC4J manuals:

■ Oracle Application Server Containers for J2EE Services Guide

■ Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide

■ Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference

■ Oracle Application Server Containers for J2EE Servlet Developer’s Guide

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Oracle Application Server Containers for J2EE Security Guide

The following documentation may also be helpful in understanding OC4J:

■ Oracle Application Server 10g Performance Guide

■ Oracle Application Server 10g High Availability Guide

■ Oracle9i JDBC Developer’s Guide and Reference

■ Oracle9i SQLJ Developer’s Guide and Reference

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server 10g DMS API Reference

xiv

Conventions
The following conventions are used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

Configuration and Deployment 1-1

1
Configuration and Deployment

This chapter demonstrates how to configure and execute OC4J as simply and
quickly as possible. Within OC4J, you can execute servlets, JSP pages, EJBs, and
SQLJ. As an example of deploying an application to OC4J, this chapter describes
how to configure the FAQ application demo.

This chapter includes the following topics:

■ Introduction to OC4J Standalone

■ OC4J Installation

■ Starting and Stopping OC4J

■ Creating the Development Directory

■ Configuring the FAQ Application Demo

■ Deploying Applications

■ Undeploying Web Applications

Introduction to OC4J Standalone

1-2 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Introduction to OC4J Standalone
Oracle Application Server Containers for J2EE (OC4J) Standalone provides a
complete Java 2 Enterprise Edition (J2EE) 1.3 environment written entirely in Java
that executes on the Java virtual machine (JVM) of the standard Java Development
Kit (JDK). You can run OC4J on the standard JDK that exists on your operating
system or install it separately. Refer to the certification matrix on
http://otn.oracle.com.

OC4J is J2EE 1.3 certified and provides all the containers, APIs, and services that
J2EE specifies. OC4J is based on technology licensed from Ironflare Corporation,
which develops the Orion server—one of the leading J2EE containers, so the
product and some of the documentation still contains some reference to the Orion
server.

OC4J supports and is certified for the standard J2EE APIs, as listed in Table 1–1.

OC4J Standalone is for use by development and small-medium scale production
deployments. Specifically, OC4J Standalone supports HTTP and HTTPS natively
without the use of Oracle HTTP Server. It does not have support for load balancing,
clustering, or management through Oracle Enterprise Manager. To use those
features, customers must install one of the Oracle Application Server installation

Table 1–1 OC4J J2EE Support

J2EE 1.3 Standard APIs Version Supported

JavaServer Pages (JSP) 1.2

Servlets 2.3

Enterprise JavaBeans (EJB) 2.0

Java Transaction API (JTA) 1.0

Java Message Service (JMS) 1.0

Java Naming and Directory Interface (JNDI) 1.2

Java Mail 1.1.2

Java Database Connectivity (JDBC) 2.0 Extension

Oracle Application Server Java Authentication
and Authorization Service

 1.0

J2EE Connector Architecture 1.0

JAXP 1.1

OC4J Installation

Configuration and Deployment 1-3

type, such as J2EE + WebCache. The standalone version is supported in a single
instance, single JVM, and single machine configuration.

The OC4J documentation assumes that you have a basic understanding of Java
programming, J2EE technology, and Web and EJB application technology. This
includes deployment conventions such as the WEB-INF and META-INF directories.

Examples in each of the primers assume the following:

■ You have a working JDK (1.3.1 or 1.4.1).

■ You have installed OC4J.

■ You have started OC4J.

Examples also use standard J2EE configuration files such as web.xml and
application.xml.

OC4J Installation
OC4J is a lightweight container that is J2EE-compliant. It is configured with
powerful and practical defaults and is ready to execute after installation. After
downloading the oc4j_extended.zip file from OTN, unzip this file to install
OC4J. The following sections describe how to do this:

■ Requirements

■ Basic Installation

■ Testing the Default Configuration

Requirements
You do not need to add anything to your CLASSPATH to run OC4J, because it loads
the Java JAR and class files directly from the installation directory, from the lib/
subdirectory, and from the deployed applications EAR, WAR, or ejb-jar files.

Basic Installation
OC4J is distributed within a ZIP file named oc4j_extended.zip on OTN. After
unzipping this file, follow instructions listed in the README.TXT. Install this ZIP file
in any directory that is in the path.

You must have a Java2 version Java executable in your $PATH, preferably version
1.3.1 or 1.4.1. To install OC4J, execute the following:

OC4J Installation

1-4 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

% cd /your_directory
% unzip oc4j_extended.zip
% cd j2ee/home
% java -jar oc4j.jar -install

Enter an administrator password

After the install is complete, the j2ee/home directory contains all the files
necessary for running OC4J with a default configuration. The installation prompts
you for an administration username and password, which is used for the
administration console command-line tool.

Testing the Default Configuration
OC4J is installed with a default configuration that includes a default Web site and a
default application. These are provided so you can start and test OC4J immediately.

Start OC4J by executing the following:

1. Change directory to the OC4J installation directory (j2ee/home), and issue one
of the following commands:

■ java -jar oc4j.jar

This starts OC4J using the default configuration files, which are located in
j2ee/home/config.

■ java -jar oc4j.jar -config /mypath/server.xml

This starts OC4J using the server.xml file located in /mypath.

The server should output an initialization string with the version number.

2. Test OC4J by accessing "http://oc4j_host:8888/" from a Web browser. If
you changed the default port number, access the Web server using
"http://oc4j_host:oc4j_port/".

Note: Instead of executing oc4j.jar from the j2ee/home
directory, you can set a $J2EE_HOME variable (for UNIX) or the
%J2EE_HOME% variable (for Windows NT) to j2ee/home, so that
in the command line and execute oc4j.jar from any directory.

For example, in the UNIX environment use the following:

% java -jar $J2EE_HOME/oc4j.jar

Starting and Stopping OC4J

Configuration and Deployment 1-5

For example, test the Web server by connecting a Web browser to
http://oc4j_host:8888/servlet/HelloWorldServlet, which should
return a "Hello World" page.

For more information on starting and stopping OC4J, see "Starting and Stopping
OC4J" on page 1-5. For more information on configuration, see "Deploying
Applications" on page 1-19.

Starting and Stopping OC4J
■ Starting OC4J

■ Administering OC4J

■ Shutting Down OC4J

Starting OC4J
OC4J is installed with a default configuration that includes a default Web site and a
default application. Therefore, you can start OC4J immediately. To start OC4J in a
standalone environment, issue the following command from the j2ee/home/
directory:

java -jar oc4j.jar options

This command starts OC4J using the default configuration files, which you can find
in the j2ee/home/config directory.

Options for this command are not necessary to start OC4J. However, if you want to
exercise more control, use the options listed in "Options for the OC4J Server JAR" on
page A-33 or issue the following command from the j2ee/home directory:

java -jar oc4j.jar -help

After OC4J launches, a message is displayed on the screen to note this fact.

Starting and Stopping OC4J

1-6 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Administering OC4J
After starting the OC4J server, you can administer the server using the admin.jar
command-line tool, which is located in <install_directory>/j2ee/home. To
use the admin.jar command, see the following syntax:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin_id
 admin_password options

where the variables are as follows:

■ oc4j_host:oc4j_ormi_port—The host name and port of the OC4J server
from which you want to deploy the application. The admin.jar tool uses the
OC4J Remote Method Invocation (ORMI) protocol to communicate with the
OC4J server. Therefore, the host name and port identified by these variables are
defined in the rmi.xml file for the OC4J server to which you are directing the
request.

The default port number for the ORMI protocol is 23791. Configure both the
host name and port number—if not using the default—in the rmi.xml file in
the <rmi-server> element, as follows:

<rmi-server port="oc4j_ormi_port" host="oc4j_host">

■ admin_id admin_password—The administration identity and password.
Specify this identity and password for the OC4J server in its principals.xml
file.

"Options for the OC4J Administration Management JAR" on page 1-3 discusses the
options for this tool.

Restarting OC4J
You can designate whether the task manager in OC4J automatically detects changes
made to deployed applications. Once a change is detected, then OC4J reloads these

Note: Instead of executing oc4j.jar from the j2ee/home
directory, you can set a $J2EE_HOME variable (for UNIX) or the
%J2EE_HOME% variable (for Windows NT) to j2ee/home, so that
in the command line and execute oc4j.jar from any directory.

For example, in the UNIX environment use the following:

% java -jar $J2EE_HOME/oc4j.jar

Starting and Stopping OC4J

Configuration and Deployment 1-7

applications automatically. In this case, you do not need to restart the server when
redeploying an application.

The check-for-updates attribute in the <application-server> element in
the server.xml file defaults to true, which enables automatic deployment. If true,
task manager checks for XML configuration file modifications. Thus, if you set this
to false, you can disable automatic refreshing of the configuration to any new XML
modifications. Also, setting this attribute to false stops the automatic deployment of
any applications until you execute admin.jar -updateConfig. If set to false,
you cause the XML configuration to refresh from the XML files and any necessary
automatic deployment to occur by using the admin.jar -updateConfig option.

If you enable automatic deployment, then you do not have to restart the OC4J
process each time you make a modification to the application. However, enabling
automatic deployment also effects your performance. Thus, it is recommended that
you enable automatic deployment only in a development environment, not in a
production environment.

Even if you have automatic deployment enabled, it does not detect modifications in
the global server XML configuration files. Thus, if you modify any of the
container-level configuration files, such as data-sources.xml, rmi.xml, or
principals.xml, you must restart the OC4J process for these modifications to be
recognized.

To restart OC4J using the default parameters, change to the installation root
directory, and execute the following:

% java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin
 admin_password -restart

This command connects to the OC4J RMI listener port and requests it to restart. It
may not work if the JVM is not responding to signals or accepting RMI messages. In
this case, stop the JVM in the UNIX environment with the following operating
system command: kill process. In the Windows NT environment, access the
Windows NT Task Manager to terminate the JVM.

Shutting Down OC4J
Shut down OC4J by executing the following:

% java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin
 admin-password -shutdown

Starting and Stopping OC4J

1-8 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

This command provides a graceful shutdown of the container. If it does not shut
down the container, force a rapid shutdown by passing the force argument, as
follows:

% java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin
 admin-password -shutdown force

If this method does not work, then kill OC4J processes with your operating system
commands or tool, depending on your system.

HTTP and RMI Communication
For HTTP applications, clients can send their requests directly to OC4J. The default
port number is 8888. You can change this port number in the appropriate
*-web-site.xml file, such as the http-web-site.xml file.

For RMI-based applications—such as EJB and JMS—clients should send their
requests directly to OC4J. The default RMI port is 23791. Modify this port number
in the rmi.xml file. See "Configuring a Listener" on page 2-10 for directions.

Quick Start for JSPs and Servlets
To deploy Web applications on OC4J, do one of the following:

■ Place your servlet classes and JSP pages in the
j2ee/home/default-web-app directory.

■ Deploy J2EE applications using the admin.jar tool. The J2EE application must
be archived in the EAR format.

Placing servlets and JSP pages in the default-web-app directory is the easiest
method to deploy applications or to migrate J2EE applications from previous
versions of OC4J.

Do the following for quick deployment of servlets or JSPs:

1. Place your servlet classes in the
j2ee/home/default-web-app/WEB-INF/classes subdirectory—in a
directory corresponding to their Java package. The servlet is accessible from
URLs of the form: http://oc4j_host:8888/servlet/class-name

For example, place the servlet class my.HelloServlet, as follows:

j2ee/home/default-web-app/Web-INF/classes/my/HelloServlet.class

Then it is accessible from the following URL:

Creating the Development Directory

Configuration and Deployment 1-9

http://oc4j_host:8888/servlet/my.HelloServlet

2. Place JSP pages anywhere in the j2ee/home/default-web-app directory.
They are accessible with URLs of the form:
http://oc4j_host:8888/path-to-JSP

For example, a JSP page in
j2ee/home/default-web-app/examples/Hello.jsp is accessible as
http://oc4j_host:8888/examples/Hello.jsp.

Creating the Development Directory
When developing your application, Oracle recommends that you use consistent and
meaningful naming conventions. As an example, you could develop your
application as modules within a directory named after your application. All the
subdirectories under this directory could be consistent with the structure for
creating JAR, WAR, and EAR archives. Thus, when you have to archive the source,
it is already in the required archive format. Figure 1–1 demonstrates this structure.

Creating the Development Directory

1-10 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Figure 1–1 Development Application Directory Structure

Consider the following points regarding Figure 1–1:

■ You cannot change the following directory names and XML filenames:
META-INF, WEB-INF, application.xml, ejb-jar.xml, web.xml, and
application-client.xml.

■ Separate directories clearly distinguish modules of the enterprise Java
application from each other. The application.xml file, which acts as the
standard J2EE application descriptor file, defines these modules.

■ The directories containing the separate modules (<ejb_module>,
<web_module>, and <client_module>) can have arbitrary names. However,
these names must match the values in the standard J2EE application descriptor
file—the local application.xml file.

■ The top of the module represents the start of a search path for classes. As a
result, classes belonging to packages are expected to be located in a nested
directory structure beneath this point. For example, a reference to an EJB

appname/

META-INF/
application.xml

<ejb_module>
EJB classes
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml
classes/

Servlet classes

<client_module>/

Client classes
META-INF/

application-client.xml

lib/
dependent libraries

/

Configuring the FAQ Application Demo

Configuration and Deployment 1-11

package class ’myapp.ejb.Demo’ is expected to be located in
appname/ejb_module/myapp/ejb/Demo.class.

Configuring the FAQ Application Demo
This section describes how to configure the FAQ J2EE demo application, which
provides support for managing Frequently Asked Questions (FAQs) and
storing/retrieving these FAQs from an Oracle database. FAQs are broadly
categorized into Specialization Areas. Each Specialization Area is further
sub-categorized into Topics. Each FAQ can be associated with multiple
Specialization Areas, where each area has one or more Topics associated with them.

You can generate a list of FAQs (in HTML format) for a given Specialization Area
for internal or external publication.

■ Internal: FAQs that are published for internal users only. These include all
external and internal FAQs.

■ External: FAQs that are published on external forums.

Within the demo, Areas, Topics, and FAQs are entered or updated in the database
through Input/Update screens or through a Web service interface. Each Area, Topic
and FAQ is uniquely identified by a primary key, which is automatically generated
by the system.

This application is a J2EE 1.3 compliant application, developed utilizing the
following technologies:

■ HTML (including MS-HTML for creating a Rich-Text Editor)

■ JavaScript

■ Cascade Style Sheets

■ Java Server Pages 1.2

■ Servlet 2.3

■ JSP Standard Tag Library (JSTL) 1.0

■ Oracle JSP 1.2 Utility Tag Libraries

■ Enterprise JavaBeans 2.0 (using Local Interfaces, Abstract Classes, CMR and
EJB-QL)

■ Entity Bean (CMP)

■ Session (Facade) Bean (stateless)

Configuring the FAQ Application Demo

1-12 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

■ Oracle Application Server Java Authentication and Authorization Service

■ Oracle Application Server Web Services

The following sections detail how to configure and deploy the FAQ demo
application. In addition, the last section demonstrates how these steps relate to any
application that you may wish to configure and deploy to OC4J:

■ Environment Setup for FAQ Demo

■ OC4J System Configuration for FAQ Demo

■ Deploy the FAQ Demo

■ Deployment Details Explained

Environment Setup for FAQ Demo
Before you configure OC4J and deploy the FAQ demo, modify the back-end
database to contain tables that are necessary for executing the FAQ demo.

Oracle Database
Add the FAQ user and tables, as follows:

1. Add the faq user with password of faq in your database.

2. Create the database tables for the FAQ demo by executing the SQL table
creation script CreateTables.sql script, which is located at
<FAQApp_home>/faq/sql/CreateTables.sql or can be downloaded with
the rest of the FAQ application from OTN at
http://otn.oracle.com/tech/java/oc4j/demos/ in the FAQApp.zip
file.

In an Oracle database environment, you can execute the SQL script through
SQL*Plus, connecting to the database and schema where you want the tables to
be installed and executing @CreateTables. Please refer to the Oracle database
documentation for further instructions on how to use SQL*Plus, running install
scripts, creating database users/schemas, and so on.

OC4J System Configuration for FAQ Demo
In order for the FAQ demo to execute properly, the following system modification
must be implemented:

■ Modify the default data source, OracleDS, to point to the back-end database.

Configuring the FAQ Application Demo

Configuration and Deployment 1-13

■ Add the FAQ user to the jazn.com realm and assign it to the users role.

The directions for each of these steps are covered in the following sections:

■ Data Source Configuration

■ Security Configuration

Data Source Configuration
In order to execute the FAQ application, you must have an Oracle database with the
corresponding FAQ application database schema installed on it. The FAQ
Application uses the default global data source named OracleDS that ships with
the application server, which must be configured so that it connects to the database
in which you created the FAQ tables.

If your back-end database uses the thin JDBC driver, is located at
myhost:1521:ORCL, and uses the username/password of faq/faq, then the
j2ee/home/config/data-sources.xml file is modified to point to the
database at the URL of jdbc:oracle:thin:@myhost:1521:ORCL, as follows:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="faq"
 password="faq"
 url="jdbc:oracle:thin:@myhost:1521:ORCL"
 inactivity-timeout="30"
/>

See Chapter 3, "Data Sources Primer" for more information on data sources.

Security Configuration
The FAQ demo uses Oracle Application Server Java Authentication and
Authorization Service for authentication and user access control capabilities. An

Note: An I/O exception is thrown if you do not update the global
OracleDS data source appropriately.

Configuring the FAQ Application Demo

1-14 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

application user is added to the default jazn.com realm through the jazn.jar
command line tool, as follows:

> java -jar jazn.jar -adduser jazn.com <username> <passwd>
> java -jar jazn.jar -grantrole users jazn.com <username>

The previous adds your user (given the username and password) to the jazn.com
realm and then grants the users role to the new user. See the Oracle Application
Server Containers for J2EE Security Guide for complete information on using OracleAS
JAAS Provider as your security provider.

Deploy the FAQ Demo
Download the FAQ demo application from OTN at
http://otn.oracle.com/tech/java/oc4j/demos in the FAQApp.zip file.

1. Unzip this file to a working directory, which is referred to as <FAQApp_Home>.

2. Deploy the FAQ application using by either copying the EAR file to the
j2ee/home/applications directory or by the admin.jar tool. The
following sections explain each method.

3. Start the OC4J server by executing java -jar oc4j.jar

4. Execute the FAQ application in your browser, where the default port is 8888.

http://oc4j_host:8888/FAQApp

Deploy Using Automatic Deployment in a Development Environment
As discussed in "Restarting OC4J" on page 1-6, OC4J supports automatic
deployment and redeployment of applications, which allows you to make changes
to the application EAR file, which are picked up by the server without stopping and
restarting OC4J. You enable this through the check-for-updates attribute in the
server.xml file.

When automatic deployment is enabled, simply modify the XML configuration
files, rearchive the application with its XML files into an EAR file, and copy the EAR
file to the applications directory. The OC4J server notices the modified date and will
redeploy the application, as necessary.

Configuring the FAQ Application Demo

Configuration and Deployment 1-15

For the first deployment of the FAQ application (locally), do the following:

1. Copy the <FAQApp_Home>/faq/dist/FAQApp.ear file to the
j2ee/home/applications directory.

2. Modify the j2ee/home/config/server.xml and http-web-site.xml
files to register the FAQ application in the j2ee/home/applications
directory, as follows:

a. In the j2ee/home/config/server.xml file, add the FAQApp entry, as
follows:

<application name="FAQApp" path="../applications/FAQApp.ear" />

This step deploys the FAQ application on OC4J. The path is relative to
j2ee/home/config. Since the FAQApp.ear file is in
j2ee/home/applications, this makes the path
../applications/FAQApp.ear.

For full details on the server.xml configuration file, see "Elements in the
server.xml File" on page A-8.

b. In the j2ee/home/config/http-web-site.xml file, bind the FAQ Web
application by adding the FAQApp entry, as follows:

<web-app application="FAQApp" name="FAQAppWeb" root="/FAQApp"
/>

This step makes FAQ accessible from the /FAQApp URL on the OC4J server.

For full details on the http-web-site.xml configuration file, see the
Oracle Application Server Containers for J2EE Servlet Developer’s Guide.

For more information, see "Manually Adding Applications in a Development
Environment" on page 2-10, "OC4J Automatic Deployment for Applications" on
page 2-15, and "What Happens When You Deploy?" on page 2-8.

Warning: Automatic deployment should only be used in a
development environment. The task manager that checks for
updates can be time consuming. Turn off automatic deployment in
a production environment by setting the check-for-updates
attribute to false.

Configuring the FAQ Application Demo

1-16 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Deploy Using the Admin.JAR Tool in All Environments
In the production environment, you should set the check-for-updates attribute
to false (see "Restarting OC4J" on page 1-6) and then use the admin.jar tool for
deploying all applications. The admin.jar tool deploys the application and
modifies all of the appropriate XML files. This provides for remote deployment.

Use the admin.jar command-line tool for registration and deployment, as follows:

java -jar admin.jar
 ormi://oc4j_host:oc4j_ormi_port
 admin welcome -deploy
 -file d:\j2ee\home\FAQAPP_Home\faq\dist\FAQApp.ear
 -deploymentName FAQApp

The default port number for oc4j_ormi_port is 23791.

This step creates the entry in the server.xml file for the FAQ application. For a
complete description of the admin.jar command-line tool, see "Options for the
OC4J Administration Management JAR" on page A-34.

You can bind any Web application through the admin.jar tool, as follows:

java -jar admin.jar
 ormi://oc4j_host:23791
 admin welcome -bindWebApp
 FAQApp FAQAppWeb http_web_site /FAQApp

This creates the <web-app> entry in the http-web-site.xml configuration file.
For a complete description of the admin.jar command-line tool, see "Options for
the OC4J Administration Management JAR" on page A-34.

For more information on configuring and managing Web applications, see the
http-web-site.xml file, see the Oracle Application Server Containers for J2EE
Servlet Developer’s Guide.

Deployment Details Explained
Although the development of J2EE applications is standardized and portable, the
XML configuration files are not. You may have to configure multiple XML files
before deploying any application to OC4J. The necessary server configuration
depends on the services that your application uses. For example, if your application
uses a database, you must configure its DataSource object in the
data-sources.xml file.

Configuring the FAQ Application Demo

Configuration and Deployment 1-17

For basic applications, such as the FAQ demo, you configure the following OC4J
XML files:

■ META-INF/application.xml—The standard J2EE application descriptor for
the application is contained within the application.xml file. This file must
be properly configured and included within the J2EE EAR file that is to be
deployed.

■ server.xml and http-web-site.xml—The application is registered in the
server.xml file; the Web application and the context it uses are registered in
the http-web-site.xml file (or any other *-web-site.xml file that you
choose).

■ data-sources.xml—You must configure the DataSource object in the
data-sources.xml file for each database used within the application.

To create and deploy simple J2EE applications, perform the following basic steps:

The following steps describe what modifications to make to deploy the FAQ demo
application into OC4J.

 Basic Step FAQ Application Step Description

1. Create or obtain the application. Download the FAQApp.zip from OTN

2. Make any necessary server
environment changes.

Set the JAVA_HOME variable

3. Modify any application XML
configuration files.

The deployment descriptors, such as web.xml
and ejb-jar.xml, are provided in the
FAQApp.EAR file. For your application, you
may have to create these XML files.

4. Update the application standard
J2EE application descriptor file.

The application.xml file is included in the
FAQApp.EAR file. For your application, you
may have to create this XML file.

5. Build an EAR file including the
application—if one does not already
exist.

If you want to modify the FAQ demo, modify
within the src directory, and use ANT to build
an EAR file.

6. Register the application in the
appropriate server XML files.

Modify the server.xml and
http-web-site.xml files or use the
admin.jar tool, which will modify these files
for you.

7. Configure the database used. Modify the data-sources.xml file.

Configuring the FAQ Application Demo

1-18 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

1. We asked you to download the FAQ demo application from the Oracle OTN
site.

2. Make any necessary server environment changes. You must set the JAVA_HOME
variable to the base directory of the Java 2 SDK.

3. All of the application XML files, such as web.xml, are provided for you in the
ZIP file, correctly configured.

4. Update the standard J2EE application descriptor file. The application.xml
in the FAQ demo application is provided for you in the ZIP file. OC4J uses the
application.xml file as the standard J2EE application descriptor file.

5. Build an EAR file including the application. You can modify the FAQ demo
application and rebuild it using the ANT command. To rebuild and deploy the
FAQ demo, execute the following:

ant deploy

The ANT build.xml is included in the FAQ ZIP download. To learn more
about the ANT file, go to the following Jakarta site:

http://jakarta.apache.org/ant/

If you do not want to rebuild, you can copy the FAQApp.ear from the ZIP file
into j2ee/home/applications. This step places the FAQ application in the
OC4J server.

6. Configure the OC4J DataSource for an Oracle database. Modify the default
data source, OracleDS, to point to your back-end database, with the correct
URL, username, and password.

7. Register the J2EE application in the server.xml file and its Web application in
the http-web-site.xml or use the admin.jar tool to deploy, which will
modify these files for you.

8. Start OC4J by executing the following command from the j2ee/home/
directory:

java -jar oc4j.jar

For a complete description of all the OC4J starting options, see "Starting OC4J" on
page 1-5.

Open your Web browser and then specify the following URL:

http://oc4j_host:8888/FAQApp

Deploying Applications

Configuration and Deployment 1-19

See "Overview of OC4J and J2EE XML Files" on page 2-2 for more information on
OC4J XML configuration files.

Deploying Applications
This section describes how to deploy a J2EE application to the OC4J server and how
to bind that application to the server so that you can access the application from
OC4J.

■ Archive Application into an EAR File

■ Deployment In a Production Environment Using ADMIN.JAR

■ Deploy your Application Manually in a Development Environment

■ Verifying Deployment

Archive Application into an EAR File
Your J2EE application can contain the following modules:

■ Web applications

The Web applications module (WAR files) includes servlets and JSP pages.

■ EJB applications

The EJB applications module (EJB JAR files) includes Enterprise JavaBeans
(EJBs).

■ Client application contained within a JAR file

Archive the JAR and WAR files that belong to an enterprise Java application into an
EAR file for deployment to OC4J. The J2EE specifications define the layout for an
EAR file.

The internal layout of an EAR file should be as follows:

Deploying Applications

1-20 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Figure 1–2 Archive Directory Format

Archive these files using the JAR command in the appname directory, as follows:

% jar cvfM appname.ear .

Note that the application.xml file acts as a standard J2EE application descriptor
file.

Deployment In a Production Environment Using ADMIN.JAR
OC4J contains a command-line deployment tool for deploying J2EE
applications—the admin.jar command. The options for this command are listed
in "Standalone OC4J Command-Line Options and Properties" on page A-33. Ensure
that automatic deployment is disabled by setting the check-for-updates
attribute to false (see "Restarting OC4J" on page 1-6).

To deploy a J2EE application with the EAR file to a remote node, execute
admin.jar, as follows:

java -jar admin.jar ormi://host:port
username password
-deploy

-file filename -deploymentName app_name
-targetPath path/destination

where

■ The host:port is the host and port of the OC4J server.

■ The username password is the administration username and password for
the OC4J server.

■ The -file path/filename indicates the local directory and filename for the
EAR file.

appname/

META-INF/
application.xml

EJB JAR file

WEB WAR file

Client JAR file

Deploying Applications

Configuration and Deployment 1-21

■ The -deploymentName app_name variable is a user-defined name of the
application.

■ The -targetPath path/destination indicates what path on the server
node in which to deploy the EAR file. Provide a target path to the directory
where the EAR file is copied for deployment. The default path is the
applications/ directory. Oracle recommends that you provide a target path.

This deployment step creates a new entry in server.xml for the application, as
follows:

<application name=app_name path=path_EARfile auto-start="true" />

where

■ The name attribute is the name of the application.

■ The path indicates the directory and filename for the EAR file.

■ The auto-start attribute indicates if this application should be automatically
restarted each time OC4J is restarted.

For a description of the elements in server.xml, see "Elements in the server.xml
File" on page A-8.

Binding the Web Application in a Production Environment
To make your J2EE Web application accessible from the OC4J Web server, bind the
Web application to the OC4J server using the -bindWebApp option as follows:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port
username password
-bindWebApp app_name web_app_name web_site_name context_root

where the following are the values for -bindWebApp:

■ app_name is the application name, which is the same name used in
-deploymentName on the -deploy option. In addition, note that this is the
same name that is saved in the <application name=app_name /> attribute
in the server.xml file.

Note: If you have a Web application within the EAR file, bind the
Web application using the admin.jar -bindWebApp option.

Deploying Applications

1-22 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

■ web_app_name is the name of the WAR file contained within the EAR
file—without the .war extension.

■ web_site_name is the name of the *-web-site.xml file that denotes the Web
site to which this Web application should be bound. This is the file that will
receive the Web application definition.

■ context_root is the root context for the Web module. The Web context defines
how the Web application is accessed.

This step creates an entry in the OC4J *-web-site.xml configuration file that is
denoted in the web_site_name variable. For a listing of all the options for
admin.jar, see "Options for the OC4J Administration Management JAR" on
page A-34.

Deploy your Application Manually in a Development Environment
To deploy your application in a development environment, you can modify the
XML files by hand. Ensure that automatic deployment is enabled by setting
check-for-updates attribute to true (see "Restarting OC4J" on page 1-6).

In server.xml, add a new or modify the existing <application name=...
path=... auto-start="true" /> entry for each J2EE application. The path
should be the full directory path and EAR filename. For our employee example, add
the following to the server.xml file:

<application name="employee"
path="/private/applications/Employee.ear"
auto-start="true" />

If you included a Web application portion, you must do the following to bind the
Web application to the Web server. In *-web-site.xml, add a <web-app ...>
entry for each Web application. The application attribute should be the same
value as provided in the server.xml file. The name attribute should be the WAR
file, without the WAR extension, for the Web application.

For Web application binding for the employee Web application, add the following:

<web-app application="employee" name="Employee-web"
root="/employee" />

Undeploying Web Applications

Configuration and Deployment 1-23

Verifying Deployment
OC4J detects the addition of your application to server.xml. The OC4J server
displays a message that your application has been deployed. After the message is
displayed, you can invoke requests against your application.

Undeploying Web Applications
You can remove a J2EE Web application from the OC4J Web server using the
-undeploy option with the admin.jar command-line tool. The syntax is as
follows:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port
admin adminpassword
-undeploy applicationName -keepFiles

This command removes the deployed J2EE application known as
applicationName and results in the following:

■ The application is removed from the OC4J runtime.

■ All bindings for the Web modules are removed from all the Web sites to which
the Web modules were bound.

■ The application files are removed from both the applications/ and
application-deployments/ directories. If you do not want these files to be
removed, use the -keepFiles switch.

Undeploying Web Applications

1-24 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Advanced Configuration, Development, and Deployment 2-1

2
Advanced Configuration,

Development, and Deployment

This chapter provides information for administering OC4J in standalone mode for
development purposes. Chapter 1, "Configuration and Deployment", discusses the
easiest method for configuring, developing, and deploying a J2EE application.
However, if you want to use other services, such as JMS, you must know how to
manipulate the XML configuration files.

This chapter discusses the following topics:

■ Overview of OC4J and J2EE XML Files

■ What Happens When You Deploy?

■ Sharing Libraries

■ Manually Adding Applications in a Development Environment

■ Building and Deploying Within a Directory

■ OC4J Automatic Deployment for Applications

■ Changing XML Files After Deployment

■ Designating a Parent of Your Application

■ Developing Startup and Shutdown Classes

■ Setting Performance Options

■ Enabling OC4J Logging

■ OC4J Debugging

Overview of OC4J and J2EE XML Files

2-2 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Overview of OC4J and J2EE XML Files
This section contains the following topics:

■ XML Configuration File Overview

■ XML File Interrelationships

XML Configuration File Overview
Because OC4J is configured solely through XML files, you must understand the role
and method for a set of XML files. Each XML file exists to satisfy a certain role; thus,
if you have need of that role, you will understand which XML file to modify and
maintain.

Figure 2–1 illustrates all the OC4J XML files and their respective roles.

■ OC4J server: All XML files within this box are used to set up this instance of the
OC4J server. These files configure things such as listening ports, administration
passwords, security, and other basic J2EE services.

OC4J server configuration files exist under the j2ee/home/config/ directory —
These files configure the OC4J server and point to other key configuration files.
The settings in the OC4J configuration files are not related to the deployed J2EE
applications directly, but to the server itself.

■ Web site: These XML files configure listening ports, protocols, and Web contexts
for the OC4J Web site.

■ Application XML files: Each J2EE application type (EJB, servlet, JSP, connector)
requires its own configuration (deployment) files. Each application type has one
J2EE deployment descriptor and one OC4J-specific deployment descriptor,
which is denoted with an "orion-" prefix. In addition, the following are global
configuration files for all components in the application:

– The application.xml as the global application configuration file that
contains common settings for all applications in this OC4J instance.

– The orion-application.xml file contains OC4J-specific global application
information for all applications in this OC4J instance.

– The global-web-application.xml file contains OC4J-specific global Web
application configuration information that contains common settings for all
Web modules in this OC4J instance.

– The oc4j-connectors.xml file contains global connector configuration
information.

Overview of OC4J and J2EE XML Files

Advanced Configuration, Development, and Deployment 2-3

Figure 2–1 OC4J and J2EE Application Files

OC4J Server XML Files

OC4J Server Configuration Files

Server Configuration

server.xml
principals.xml
data-sources.xml
rmi.xml
jms.xml

*-web-site.xml

Web site

Application XML Files

J2EE Application Deployment XML Files

Global Configuration

application.xml
orion-application.xml
global-web-application.xml
oc4j-connectors.xml

Client

application-client.xml
orion-application-client.xml

ejb-jar.xml
orion-ejb-jar.xml

EJB

ra.xml
oc4j-ra.xml

Connector

web.xml
orion-web.xml

Web site

O
_1

00
9

Overview of OC4J and J2EE XML Files

2-4 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Table 2–1 describes the role and function for each XML file that was displayed in the
preceding figure.

Note: Each deployed application uses an application.xml as the
standard J2EE application descriptor file. That XML file is local to
the application and separate from the application.xml that exists
in the j2ee/home/config directory. The
j2ee/home/config/application.xml file configures options that
are applied to all applications deployed in this OC4J server
instance.

Table 2–1 OC4J Features and Components

XML Configuration File Features/Components

server.xml OC4J overall server configuration. Configures the
server and points to the XML files that add to this
file, such as jms.xml for JMS support. The listing
of other XML files enables the services to be
configured in separate files, but the server.xml
file denotes that they be used for the OC4J
configuration.

principals.xml OC4J security configuration for the type of security
required for accessing the server.

data-sources.xml OC4J data source configuration for all databases
used by applications within OC4J.

rmi.xml OC4J RMI port configuration and RMI tunneling
over HTTP.

jms.xml OC4J JMS configuration for Destination topics
and queues that are used by JMS and MDBs in
OC4J.

*-web-site.xml OC4J Web site definition. Each Web site is defined
within its own XML file. It is a good practice to
name each XML file based on the root element
name, <web-site>. For example,
*-web-site.xml could be my-web-site.xml.
Normally, the global Web site definition is in
http-web-site.xml. You must specify each Web
site XML file in its own web-site path statement
contained within the server.xml file.

Overview of OC4J and J2EE XML Files

Advanced Configuration, Development, and Deployment 2-5

application.xml
orion-application.xml

J2EE application standard J2EE application
descriptor file and configuration files.

■ The global application.xml file exists in the
j2ee/home/config directory and contains
common settings for all applications in this
OC4J instance. This file defines the location of
the security XML definition
file—principals.xml. This is a different
XML file than the local application.xml
files.

■ The local application.xml file defines the
J2EE EAR file, which contains the J2EE
application modules. This file exists within the
J2EE application EAR file.

■ The orion-application.xml file is the
OC4J-specific definitions for all applications.

global-web-application.xml
web.xml
orion-web.xml

J2EE Web application configuration files.

■ global-web-application.xml is an
OC4J-specific file for configuring servlets that
are bound to all Web sites.

■ web.xml and orion-web.xml for each Web
application.

The web.xml files are used to define the Web
application deployment parameters and are
included in the WAR file. In addition, you can
specify the URL pattern for servlets and JSPs in this
file. For example, servlet is defined in the
<servlet> element, and its URL pattern is defined
in the <servlet-mapping> element.

ejb-jar.xml
orion-ejb-jar.xml

J2EE EJB application configuration files. The
ejb-jar.xml files are used to define the EJB
deployment descriptors and are included in the EJB
JAR file.

application-client.xml
orion-application-client.xml

J2EE client application configuration files.

Table 2–1 OC4J Features and Components (Cont.)

XML Configuration File Features/Components

Overview of OC4J and J2EE XML Files

2-6 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

XML File Interrelationships
Some of these XML files are interrelated. That is, some of these XML files reference
other XML files—both OC4J configuration and J2EE application (see Figure 2–3).

Here are the interrelated files:

■ server.xml—contains references to the following:

– All *-web-site files for each Web site for this OC4J server, including the
default http-web-site.xml file.

– The location of each of the other OC4J server configuration files, except
principals.xml, which is defined in the global application.xml, shown in
Figure 2–1

– The location of each application.xml file for each J2EE application that has
been deployed in OC4J

■ http-web-site.xml—references applications by name, as defined in the
server.xml file. And this file references an application-specific EAR file.

■ application.xml—contains a reference to the principals.xml file.

The server.xml file is the keystone that contains references to most of the files used
within the OC4J server. Figure 2–2 shows the XML files that can be referenced in the
server.xml file:

oc4j-connectors.xml
ra.xml
oc4j-ra.xml

Connector configuration files.

■ The oc4j-connectors.xml file contains
global OC4J-specific configuration for
connectors.

■ The ra.xml file contains J2EE configuration.

■ The oc4j-ra.xml file contains OC4J-specific
configuration.

Table 2–1 OC4J Features and Components (Cont.)

XML Configuration File Features/Components

Overview of OC4J and J2EE XML Files

Advanced Configuration, Development, and Deployment 2-7

Figure 2–2 XML Files Referenced Within server.xml

Figure 2–3 demonstrates how the server.xml points to other XML configuration
files. For each XML file, the location can be the full path or a path relative to the
location of where the server.xml file exists. In addition, the name of the XML file
can be any name, as long as the contents of the file conform to the appropriate DTD.

■ The <rmi-config> element denotes the name and location of the rmi.xml file.

■ The <jms-config> element denotes the name and location of the jms.xml file.

■ The <global-application> element denotes the name and location of the
global application.xml file.

■ The <global-web-app-config> element denotes the name and location of the
global-web-application.xml file.

■ The <web-site> element denotes the name and location of one *-web-site.xml
file. Since you can have multiple Web sites, you can have multiple <web-site>
entries.

In addition to pointing to the OC4J server configuration files, the server.xml file
describes the applications that have been deployed to this OC4J server. You can
deploy applications through the admin.jar command using the -deploy option or
by modifying the server.xml file directly. Each deployed application is denoted by
the <application> element. See "Manually Adding Applications in a Development
Environment" on page 2-10 for more information on directly editing the server.xml
file.

...j2ee/home/config/server.xml

rmi.xml
jms.xml
application.xml

data-sources.xml
jazn-data.xml

global-web-application.xml
default-web-site.xml O

_1
06

0

What Happens When You Deploy?

2-8 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Figure 2–3 Server.xml File and Related XML Files

Other elements for server.xml are described in "Elements in the server.xml File" on
page A-8.

What Happens When You Deploy?
Whether you deploy the application through the admin.jar command or by editing
XML files, the following occurs:

OC4J opens the EAR file and reads the descriptors.

1. OC4J opens, parses the application.xml that exists in the EAR file. The
application.xml file lists all of the modules contained within the EAR file.
OC4J notes these modules and initializes the EAR environment.

2. OC4J reads the module deployment descriptors for each module type: Web
module, EJB module, connector module, or client module. The J2EE descriptors

server.xml

O
_1

01
0

rmi.xml<rmi...>

<jms...> jms.xml

application.xml

global-web-application.xml

default-web-site.xml

bank_application<application name="bank_application".../>

<web-site path="./default-web-site.xml"/>

 <global-web-app-config
path="global-web-application.xml"/>

 <global-application..path="application.xml"/>

inventory_application<application name="inventory_application".../>

Sharing Libraries

Advanced Configuration, Development, and Deployment 2-9

are read into memory. If OC4J-specific descriptors are included, these are also
read into memory. The JAR and WAR file environments are initialized.

3. OC4J notes any unconfigured items that have defaults and writes these defaults
in the appropriate OC4J-specific deployment descriptor. Thus, if you did not
provide an OC4J-specific deployment descriptor, you will notice that OC4J
provides one written with certain defaults. If you did provide an OC4J-specific
deployment descriptor, you may notice that OC4J added elements.

4. OC4J reacts to the configuration details contained in both the J2EE deployment
descriptors and any OC4J-specific deployment descriptors. OC4J notes any J2EE
component configurations that require action on OC4J’s part, such as wrapping
beans with their interfaces.

5. After defaults have been added and necessary actions have been taken, OC4J
writes out the new module deployment descriptors to the
application-deployments/ directory. These are the descriptors that OC4J uses
when starting and restarting your application. But do not modify these
descriptors. Always change your deployment descriptors in the "master"
location.

6. OC4J copies the EAR file to the "master" directory. This defaults to the
applications/ directory. However, you can designate where the "master"
directory is by the admin.jar -targetPath option.

7. Finally, OC4J updates the server.xml file with the notation that this application
has been deployed.

Sharing Libraries
If you have libraries that you want to share among applications, add a <library>
element in the global application.xml file, indicating the directory where you are
placing the libraries, as follows:

Windows:

<library path="d:\oc4j\j2ee\home\applib\"/>

Note: If you deploy this EAR file using admin.jar without
removing the EAR file from the applications/ directory, the new
deployment renames the EAR file prepended with an underscore. It
does not copy over the EAR file. Instead, you can copy over the
EAR file. OC4J notices the change in the timestamp and redeploys.

Manually Adding Applications in a Development Environment

2-10 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

UNIX:

<library path="/private/oc4j/j2ee/home/applib/"/>

For each directory to be included, use a separate <library> element on a separate
line, as follows:

<library path="/private/oc4j/j2ee/home/applib/"/>
<library path="/private/oc4j/j2ee/home/mylibrary/"/>

As a default, a <library> element exists in the global application.xml file with the
j2ee/home/applib directory. Instead of modifying the <library> element to contain
other directories, you could move your libraries into the applib directory. However,
note that adding libraries to this directory increases the size of OC4J and effects the
performance as all libraries are searched for unknown classes. Use this with
discretion.

If you can, you should keep your shared libraries local to the application through
the orion-application.xml file deployed with the application. You can add
<library> elements in the orion-application.xml file for the application to
indicate where the libraries are located, which are used only within the application.

Manually Adding Applications in a Development Environment
When you are in a development environment, it is sometimes easier to modify XML
files than to use the admin.jar command for each iteration of development. The
following sections help you understand how to modify your XML configuration
files:

■ Configuring a Listener

■ Configuring J2EE Applications

Configuring a Listener
Each OC4J server is configured to listen on HTTP or RMI protocols for incoming
requests. Each OC4J Web server is configured within its own *-web-site.xml file.

Note: The default j2ee/home/applib directory is not created
when OC4J is installed. If you want to add shared libraries to this
directory, you must first create it before adding your libraries.

Manually Adding Applications in a Development Environment

Advanced Configuration, Development, and Deployment 2-11

■ HTTP protocol listener—HTTP clients can access an OC4J HTTP listener
directly. This involves configuring an http-web-site.xml file, which indicates
the HTTP listener port. The default HTTP port is 8888. The following shows the
entry in the http-web-site.xml for an HTTP listener with a port number of
8888:

<web-site host="oc4j_host" port="8888" protocol="http"
 display-name="Default OC4J WebSite">

■ RMI protocol listener—EJB clients and the OC4J tools, such as admin.jar, access
the OC4J server through a configured RMI port. This involves configuring the
rmi.xml file. The default RMI port is 23791. The following shows the default
RMI port number configured in the rmi.xml file:

<rmi-server port="23791" >

Configuring J2EE Applications
To configure and deploy your J2EE applications, modify the server.xml and
http-web-site.xml files with your application information.

■ In server.xml, add a new or modify the existing <application name=...
path=... auto-start="true" /> entry for each application that you want
automatically started when OC4J starts. The path points to either the location of
the EAR file to be deployed or the exploded directory where the application has
been built. See "Deployment In a Production Environment Using ADMIN.JAR"
on page 1-20 or "Building and Deploying Within a Directory" on page 2-12 for
more information.

■ In http-web-site.xml, add a <web-app...> entry for each Web application you
want bound to the Web site upon OC4J startup. Because the name attribute is the
WAR filename (without the .war extension), you must have one line for each
WAR file included in your J2EE application.

For Web application binding using a WAR file, add the following:

<web-app application="myapp" name="myapp-web" root="/myapp" />

■ The application attribute is the name provided in the server.xml as the
application name.

■ The name attribute is the name of the WAR file, without the .WAR extension.

■ The root attribute defines the root context for the application off of the Web
site. For example, if you defined your Web site as

Building and Deploying Within a Directory

2-12 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

"http://oc4j_host:8888", then to initiate the application, point your
browser at "http://oc4j_host:8888/myapp".

Building and Deploying Within a Directory
When developing applications, you want to quickly modify, compile, and execute
your classes. OC4J can automatically deploy your applications as you are
developing them within an expanded directory format. OC4J automatically deploys
applications if the timestamp of the top directory, noted by appname in Figure 2–4,
changes. This is the directory that server.xml knows as the "master" location.

The application must be placed in the "master" directory in the same hierarchical
format as necessary for JAR, WAR, and EAR files. For example, if appname is the
directory where your J2EE application resides, Figure 2–4 displays the necessary
directory structure.

Note: Wait for automatic startup to complete before trying to
access the client. The client fails on lookup if it tries to access before
the completion of these processes.

Building and Deploying Within a Directory

Advanced Configuration, Development, and Deployment 2-13

Figure 2–4 Development Application Directory Structure

To deploy EJB or complex J2EE applications in an expanded directory format,
complete the following steps:

1. Place the files in any directory. Figure 2–4 demonstrates an application placed
into j2ee/home/applications/appname/. The directory structure below
appname is similar to that used within an EAR file, as follows:

a. Replace the EJB JAR file name, Web application WAR file name, client JAR
file name, and Resource Adapter Archive (RAR) file name with a directory
name of your choosing to represent the separate modules. Figure 2–4
demonstrates these directory names by ejb_module/, web_module/,
client_module/, and connector_module/.

applications/<appname>/

META-INF/
application.xml

<ejb_module>
EJB classes (my.ejb.class maps to /my/ejb/class)
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml
classes/

Servlet classes

<client_module>/

Client classes
META-INF/

application-client.xml

lib/
dependent libraries

/

 (my.Servlet to /my/Servlet)

<connector-module>
META-INF/

ra.xml

resource adaptor JAR files

native libraries

Building and Deploying Within a Directory

2-14 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

b. Place the classes for each module within the appropriate directory structure
that maps to their package structure.

2. Modify the server.xml, application.xml, and *-web-site.xml files. The
server.xml and *-web-site.xml files are located in j2ee/home/config
directory, while the application.xml is under
j2ee/home/applications/<appname>/META-INF directory. Modify these files as
follows:

■ In server.xml, add a new or modify the existing <application name=...
path=... auto-start="true" /> element for each J2EE application. The
path points to the "master" application directory. In Figure 2–4, this is
j2ee/home/applications/appname/.

You can specify the path in one of two manners:

* Specifying the full path from root to the parent directory.

In the example in Figure 2–4, if appname is "myapp", then the fully-qual-
ified path is as follows:

<application_name="myapp"
 path="/private/j2ee/home/applications/myapp"
 auto-start="true" />

* Specifying the relative path. The path is relative to where the
server.xml file exists to where the parent directory lives.

 In the example in Figure 2–4, if appname is "myapp", then the relative
path is as follows:

<application_name="myapp" path="../applications/myapp"
auto-start="true" />

■ In application.xml, modify the <module> elements to contain the directory
names for each module—not JAR or WAR files. You must modify the
<web-uri>, the <ejb>, and the <client> elements in the application.xml
file to designate the directories where these modules exist. The path
included in these elements should be relative to the "master" directory and
the parent of the WEB-INF or META-INF directories in each of these
application types.

For example, if the web_module/ directory in Figure 2–4 was "myapp-web/",
then the following example designates this as the Web module directory
within the <web-uri> element as follows:

OC4J Automatic Deployment for Applications

Advanced Configuration, Development, and Deployment 2-15

<module>
 <web>
 <web-uri>myapp-web</web-uri>
 </web>
</module>

■ In the *-web-site.xml file, add a <web-app...> element for each Web
application. This is important, because it binds the Web application within
the Web site. The application attribute value should be the same value as
that provided in the server.xml file. The name attribute should be the
directory for the Web application. Note that the directory path given in the
name element follows the same rules as for the path in the <web-uri>
element in the application.xml file.

To bind the"myapp" Web application, add the following:

<web-app application="myapp" name="myapp-web" root="/myapp" />

OC4J Automatic Deployment for Applications
OC4J automatically deploys an application if the timestamp on an EAR file has
changed. Restarting OC4J to deploy or redeploy applications is not necessary.
Automatic deployment is not enabled in all cases, but deployment occurs in the
following cases:

■ changes to EAR files are checked

If you change the EAR file, OC4J automatically detects the change. OC4J detects
the timestamp change and redeploys the application.

■ change in timestamp of certain XML files in the exploded directory format (The
appname directory) that is discussed in "Building and Deploying Within a
Directory" on page 2-12. For automatic deployment of exploded directory
applications, you must do the following:

1. Modify the classes in the <module> and touch its J2EE deployment
descriptor to change the timestamp on the XML file. For example, if you

Note: You achieve better performance if you are deploying with
an EAR file. During execution, the entire EAR file is loaded into
memory and indexed. This is faster than reading in each class from
the development directory when necessary.

Changing XML Files After Deployment

2-16 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

modify servlet classes, you must touch its web.xml file. This notifies OC4J
that changes occurred in this <module>.

2. Touch the application.xml of this application. Changing the timestamp of
the application.xml starts the automatic deployment. Once started, OC4J
checks which modules to redeploy by noticing which module deployment
descriptors have timestamp changes.

When OC4J does not check for updates, redeploy by either using the admin.jar
command-line tool or restarting the OC4J server manually. See "Options for the
OC4J Administration Management JAR" on page A-34 for a description of the
-deploy option.

Changing XML Files After Deployment
Whenever you deploy an application, OC4J automatically generates the
OC4J-specific XML files with the default elements. If you want to change these files
or add to the existing XML files, you must copy the XML files to where your
original development directory for the application and change it in this location. If
you change the XML file within the deployed location, OC4J simply overwrites
these changes when the application is deployed again. The changes only stay
constant when changed in the development directories.

For all OC4J-specific XML files, you can add these files within the recommended
development structure as shown in Figure 2–5.

Designating a Parent of Your Application

Advanced Configuration, Development, and Deployment 2-17

Figure 2–5 Development Application Directory Structure

Designating a Parent of Your Application
A child application can see the namespace of its parent application. Thus, setting up
an application as a parent is used to share services among children. The default
parent is the global application.

To set up an application as a parent of another, you can do one of the following:

■ Use the -parent option of the admin.jar command when deploying the
originating application. This option allows you to designate what application
will be the parent of the deploying application.

■ Specify the parent in the application definition line in the server.xml file. Each
application is defined by an <application> element in the server.xml file. In
this element, a parent attribute designates the parent application.

<application ... parent="applicationWithCommonClasses" .../>

applications/appname/

META-INF/
application.xml

ejb_module/
EJB classes (my.ejb.class maps to /my/ejb/class)
META-INF/

ejb-jar.xml

web_module/
index.html
JSP pages
WEB-INF/

web.xml

classes/
Servlet classes

client_module/

Client classes
META-INF/

application-client.xml

lib/
dependent libraries

 (my.Servlet to /my/Servlet)

orion-ejb-jar.xml

orion-web.xml

orion-application-client.xml

Developing Startup and Shutdown Classes

2-18 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Developing Startup and Shutdown Classes
You can develop classes that are called after OC4J initializes or before OC4J
terminates. Startup classes can start services and perform functions after OC4J
initiates; shutdown classes can terminate these services and perform functions
before OC4J terminates. The oc4j.jar must be in the Java CLASSPATH when you
compile these classes.

OC4J deploys and executes the OC4J startup and shutdown classes based on
configuration of these classes in the server.xml file.

■ OC4J Startup Classes

■ OC4J Shutdown Classes

OC4J Startup Classes
Startup classes are executed only once after OC4J initializes. They are not
re-executed everytime the server.xml file is touched. Your startup class implements
the com.evermind.server.OC4JStartup interface that contains two
methods—preDeploy and postDeploy—in which you can implement code for
starting services or performing other initialization routines.

■ The preDeploy method executes before any OC4J application initialization.

■ The postDeploy method executes after all OC4J applications initialize.

Each method requires two arguments—a Hashtable that is populated from the
configuration and a JNDI Context to which you can bind to process values
contained within the Context. Both methods return a String, which is currently
ignored.

Once created, you must configure the startup class within the <startup-classes>
element in the server.xml file. Each OC4JStartup class is defined in a single
<startup-class> element within the <startup-classes> element. Each
<startup-class> defines the following:

■ The name of the class that implements the com.evermind.server.OC4JStartup
interface.

■ Whether a failure is fatal. If considered fatal, then when an exception is thrown,
OC4J logs the exception and exits. If not considered fatal, then OC4J logs the
exception and continues. Default is not fatal.

■ The order of execution where each startup class receives an integer number that
designates in what order the classes are executed.

Developing Startup and Shutdown Classes

Advanced Configuration, Development, and Deployment 2-19

■ The initialization parameters that contain key-value pairs, of type String,
which OC4J takes, which are provided within the input Hashtable argument.
The names for the key-value pairs must be unique, as JNDI is used to bind each
value to its name.

In the <init-library path="../[xxx]" /> element in the server.xml file,
configure the directory where the startup class resides, or the directory and JAR
filename where the class is archived. The path attribute can be fully-qualified or
relative to j2ee/home/config.

Example 2–1 Startup Class Example

The configuration for the TestStartup class is contained within a <startup-class>
element in the server.xml file. The configuration defines the following:

■ The failure-is-fatal attribute is true, so that an exception causes OC4J to
exit.

■ The execution-order is 0, so that this is the first startup class to execute.

■ Two initialization key-value pairs defined, of type String, which will be
populated in the Hashtable, of the following:

"oracle.test.startup" "true"
"startup.oracle.year" "2002"

Thus, configure the following in the server.xml file to define the TestStartup class:

<startup-classes>
 <startup-class classname="TestStartup" failure-is-fatal="true">
 <execution-order>0</execution-order>
 <init-param>
 <param-name>oracle.test.startup</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>startup.oracle.year</param-name>
 <param-value>2002</param-value>
 </init-param>
 </startup-class>
 </startup-classes>

Note: The names of the key-value pairs must be unique in all
startup and shutdown classes, as JNDI binds the name to its value.

Developing Startup and Shutdown Classes

2-20 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

The container provides the two initialization kay-value pairs within the input
Hashtable parameter to the startup class.

The following example shows TestStartup, which implements the
com.evermind.server.OC4JStartup interface. The preDeploy method retrieves the
key-value pairs from the Hashtable and prints them out. The postDeploy method is
a null method. The oc4j.jar must be in the Java CLASSPATH when you compile
TestStartup.

import com.evermind.server.OC4JStartup;

import javax.naming.*;
import java.util.*;

public class TestStartup implements OC4JStartup {
 public String preDeploy(Hashtable args, Context context) throws Exception {
 // bind each argument using its name
 Enumeration keys = args.keys();
 while(keys.hasMoreElements()) {
 String key = (String)keys.nextElement();
 String value = (String)args.get(key);
 System.out.println("prop: " + key + " value: " + args.get(key));
 context.bind(key, value);
 }

 return "ok";
 }

 public String postDeploy(Hashtable args, Context context) throws Exception {
 return null;
 }
}

Assuming that the TestStartup class is archived in "../app1/startup.jar",
modify the <init-library> element in the server.xml file as follows:

<init-library path="../app1/startup.jar" />

When you start OC4J, the preDeploy method is executed before any application is
initialized. OC4J populates the JNDI context with the values from the Hashtable. If
TestStartup throws an exception, then OC4J exits since the failure-is-fatal
attribute was set to TRUE.

Setting Performance Options

Advanced Configuration, Development, and Deployment 2-21

OC4J Shutdown Classes
Shutdown classes are executed before OC4J terminates. Your shutdown class
implements the com.evermind.server.OC4JShutdown interface that contains two
methods—preUndeploy and postUndeploy—in which you can implement code for
shutting down services or perform other termination routines.

■ The preUndeploy method executes before any OC4J application terminates.

■ The postUndeploy method executes after all OC4J applications terminates.

Each method requires two arguments—a Hashtable that is populated from the
configuration and a JNDI Context to which you can bind to process values
contained within the Context.

The implementation and configuration is identical to the shutdown classes as
described in "OC4J Startup Classes" on page 2-18 with the exception that the
configuration is defined within the <shutdown-classes> and <shutdown-class>
elements and there is no failure-is-fatal attribute. Thus, the configuration for a
TestShutdown class would be as follows:

<shutdown-classes>
 <shutdown-class classname="TestShutdown">
 <execution-order>0</execution-order>
 <init-param>
 <param-name>oracle.test.shutdown</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>shutdown.oracle.year</param-name>
 <param-value>2002</param-value>
 </init-param>
 </shutdown-class>
 </shutdown-classes>

Assuming that the TestShutdown class is archived in "../app1/shutdown.jar", add
another <init-library> element in the server.xml file as follows:

<init-library path="../app1/shutdown.jar" />

Setting Performance Options
Most performance settings are discussed in the Oracle Application Server 10g
Performance Guide.

Setting Performance Options

2-22 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

You can manage these performance settings yourself from either the OC4J
command-line option or by editing the appropriate XML file element.

■ Performance Command-Line Options

■ Thread Pool Settings

■ Statement Caching

■ Task Manager Granularity

Performance Command-Line Options
Each -D command-line option, except for the dedicated.rmicontext option,
defaults to the recommended setting. However, you can modify these options by
providing each -D command-line option as an OC4J option. See the "Standalone
OC4J Command-Line Options and Properties" on page A-33 for an example.

■ dedicated.rmicontext=true/false. The default value is false. This
replaces the deprecated dedicated.connection setting. When two or more
clients in the same process retrieve an InitialContext, OC4J returns a
cached context. Thus, each client receives the same InitialContext, which is
assigned to the process. Server lookup, which results in server load balancing,
happens only if the client retrieves its own InitialContext. If you set
dedicated.rmicontext=true, then each client receives its own
InitialContext instead of a shared context. When each client has its own
InitialContext, then the clients can be load balanced.

This parameter is for the client. You can also set this in the JNDI properties.

■ oracle.dms.sensors=[none, normal, heavy, all]. You can set the value for
Oracle Application Server built-in performance metrics to the following: None
(off), normal (medium amount of metrics), heavy (high number of metrics), or
all (all possible metrics). The default is normal.This parameter should be set on
the OC4J server. The previous method for turning on these performance
metrics, oracle.dms.gate=true/false, is replaced by the
oracle.dms.sensors variable. However, if you still use oracle.dms.gate, then
setting this variable to false is equivalent to setting oracle.dms.sensors=none.

■ DefineColumnType=true/false. The default is false. Set this to true if you
are using an Oracle JDBC driver that is prior to 9.2. For these drivers, setting
this variable to true avoids a round-trip when executing a select over the Oracle
JDBC driver. This parameter should be set on the OC4J server.

Setting Performance Options

Advanced Configuration, Development, and Deployment 2-23

When you change the value of this option and restart OC4J, it is only valid for
applications deployed after the change. Any applications deployed before the
change are not affected.

When true, the DefineColumnType extension saves a round trip to the
database that would otherwise be necessary to describe the table. When the
Oracle JDBC driver performs a query, it first uses a round trip to a database to
determine the types that it should use for the columns of the result set. Then,
when JDBC receives data from the query, it converts the data, as necessary, as it
populates the result set. When you specify column types for a query with the
DefineColumnType extension set to true, you avoid the first round trip to the
Oracle database. The server, which is optimized to do so, performs any
necessary type conversions.

Thread Pool Settings
You can specify an unbounded, one, or two thread pools for an OC4J process
through the <global-thread-pool> element in the server.xml file. If you do
not specify this element, then an infinite number of threads can be created, which is
the unbounded option.

There are two types of threads in OC4J:

■ short lived threads: A worker thread that is process intensive and uses database
resources. These threads are mapped ApplicationServerThreadPool.

■ long lived threads: A connection thread that is not process intensive. It listens
for events or processes socket IOs. These threads are mapped to
ConnectionThreadPool.

OC4J always maintains a certain amount of worker threads, so that any client
connection traffic bursts can be handled.

If you specify a single thread pool, then both short and long lived threads exist in
this pool. The risk is that all the available threads in the pool are one type of thread.
Then, performance can be poor because of a lack of resources for the other type of
thread. However, OC4J always guarantees a certain amount of worker threads,
which are normally mapped to short lived threads. If a need for a worker thread
arises and no short lived thread is available, the work is handled by a long lived
thread.

If you specify two thread pools, then each pool contains one type of thread.

To create a single pool, configure the min, max, queue, and keepAlive attributes.
To create two pools, configure the min, max, queue, and keepAlive attributes for

Setting Performance Options

2-24 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

the first pool and the cx-min, cx-max, cx-queue, and cx-keepAlive attributes
for the second pool. In order to activate two thread pools, you must configure all
the attributes for the first thread pool, which includes min, max, queue, and
keepAlive. If any of these attributes is not configured, you cannot configure the
second pool. Instead, you will receive the following error message:

Error initializing server: Invalid Thread Pool parameter: null

The global-thread-pool element provides the following attributes:

Table 2–2 The Thread Pool Attributes

Thread Pool Attributes Description

min The minimum number of threads that OC4J can
simultaneously execute. By default, a minimum number of
threads are preallocated and placed in the thread pool when
the container starts. Value is an integer. The default is 20. The
minimum value you can set this to is 10.

max The maximum number of threads that OC4J can
simultaneously execute. New threads are spawned if the
maximum size is not reached and if there are no idle threads.
Idle threads are used first before a new thread is spawned.
Value is an integer. The default is 40.

queue The maximum number of requests that can be kept in the
queue. Value is an integer. The default is 80.

keepAlive The number of milliseconds to keep a thread alive (idle) while
waiting for a new request. This timeout designates how long
an idle thread remains alive. If the timeout is reached, the
thread is destroyed. The minimum time is a minute. Time is set
in milliseconds. To never destroy threads, set this timeout to a
negative one.

Value is a long. The default is 600000 milliseconds.

cx-min The minimum number of connection threads that OC4J can
simultaneously execute. Value is an integer. The default is 20.
The minimum value you can set this to is 10.

cx-max The maximum number of connection threads that OC4J can
simultaneously execute. Value is an integer. The default is 40.

cx-queue The maximum number of connection requests that can be kept
in the queue. Value is an integer. The default is 80.

Setting Performance Options

Advanced Configuration, Development, and Deployment 2-25

Recommendations:

■ The queue attributes should be at least twice the size of the maximum number
of threads.

■ The minimum and maximum number of worker threads should be a multiple
of the number of CPUs installed on your machine and fairly small. The more
threads you have, the more burden you put on the operating system and the
garbage collector. The minimum that you should set it to is 10.

■ The cx-min and cx-max sets the thread pool size for the connection threads;
thus, they are relative to the number of the physical connections you have at
any point in time. The cx-queue handles burst in connection traffic.

■ When running benchmarks or in a production environment, once you figure
out the right number of threads, set the minimum to the maximum number and
the keepAlive attribute to negative one.

Example 2–2 Setting Thread Pool

The following example initializes two thread pools for the OC4J process. Each
contains at minimum 10 threads and maximum of 100 threads. The number of
requests outstanding in each queue can be 200 requests. Also, idle threads are kept
alive for 700 seconds. The thread pool information is printed at startup.

<application-server ...>
...

<global-thread-pool min="10" max="100" queue="200"
keepAlive="700000" cx-min="10" cx-max="100" cx-queue="200"
cx-keepAlive="700000" debug="true"/>

...

cx-keepAlive The number of milliseconds to keep a connection thread alive
(idle) while waiting for a new request. This timeout designates
how long an idle thread remains alive. If the timeout is
reached, the thread is destroyed. The minimum time is a
minute. Time is set in milliseconds. To never destroy threads,
set this timeout to a negative one.

Value is a long. The default is 600000 milliseconds.

debug If true, print the application server thread pool information at
startup. The default is false.

Table 2–2 The Thread Pool Attributes (Cont.)

Thread Pool Attributes Description

Setting Performance Options

2-26 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

</application-server>

Statement Caching
You can cache database statements, which prevents the overhead of repeated cursor
creation and repeated statement parsing and creation. In the DataSource
configuration, you enable JDBC statement caching, which caches executable
statements that are used repeatedly. A JDBC statement cache is associated with a
particular physical connection. See Oracle9i JDBC Developer’s Guide and Reference for
more information on statement caching.

You can dynamically enable and disable statement caching programmatically
through the setStmtCacheSize() method of your connection object or through
the stmt-cache-size XML attribute in the DataSource configuration. An
integer value is expected with the size of the cache. The cache size you specify is the
maximum number of statements in the cache. The user determines how many
distinct statements the application issues to the database. Then, the user sets the
size of the cache to this number.

If you do not specify this attribute or set it to zero, this cache is disabled.

Example 2–3 Statement Caching

The following XML sets the statement cache size to 200 statements.

<data-source>
 ...
 stmt-cache-size="200"
</data-source>

Task Manager Granularity
The task manager is a background process that performs cleanup. However, the
task manager can be expensive. You can manage when the task manager performs
its duties through the taskmanager-granularity attribute in server.xml.
This element sets how often the task manager is kicked off for cleanup. Value is in
milliseconds. Default is 1000 milliseconds.

<application-server ... taskmanager-granularity="60000" ...>

Enabling OC4J Logging

Advanced Configuration, Development, and Deployment 2-27

Enabling OC4J Logging
OC4J logs messages both to standard error, standard out, and several log files for
OC4J services and deployed applications.

■ Viewing OC4J System and Application Log Messages: This section describes the
separate log files for OC4J sub-systems and deployed applications. You can
manage how large these files can be and where they are located.

■ Redirecting Standard Out and Standard Error: This section describes how to
forward standard out and standard error messages to a log file.

Viewing OC4J System and Application Log Messages
Each OC4J process included in the Oracle Application Server environment has a set
of log files, as shown in Table 2–3. If there are multiple processes running for an
OC4J instance, there is a multiple set of log files.

There are two types of log files:

Note: Also, OC4J supports Jakarta log4j. See the "Open Source
Frameworks and Utilities" appendix in the Oracle Application Server
Containers for J2EE Servlet Developer’s Guide.

Table 2–3 List of Log Files Generated for OC4J

Default Log File Name Description Scope Configuration File

application.log All events, errors, and exceptions
for a deployed application.

One log file for each
application deployed.

orion-application.
xml

global-application
.log

All common events, errors, and
exceptions related to
applications.

All applications,
including the default
application.

application.xml

jms.log All JMS events and errors. JMS sub-system jms.xml

rmi.log All RMI events and errors. RMI sub-system rmi.xml

server.log All events not associated with a
particular sub-system or an
application. This logs history of
server startup, shutdown
internal server errors.

server-wide server.xml

web-access.log Logs all accesses to the Web site. Each Web site http-web-site.xml

Enabling OC4J Logging

2-28 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

■ Text Log Files: The messages logged in these files are text-based and not in XML
format. You can read these messages with any editor. This is the default.
Normally, those who use OC4J standalone would benefit from viewing their log
messages in a text format.

■ Oracle Diagnostic Logging (ODL) Log Files: The messages logged in these files
use an XML format that can be read by a GUI tool, such as the Oracle Enterprise
Manager GUI. We recommend that you use this format for your logging when
you are using OC4J within Oracle Application Server.

Text Log Files
Full text logging is still available in OC4J. Primarily, you should use text logging
within OC4J standalone. It is easier to read within any editor, as it is not in XML
format.

The text logging facility separates messages out in alignment with the XML files.
However, instead of writing to multiple log files of the same size, all messages for
that component are written into a single file. The text logging does not have any
imposed limits or log rollover. Instead, the log files will continue to grow, unless
you stop OC4J, remove the file, and restart OC4J to start the log files over. You can
overrun your disk space if you do not monitor your log files. This is only feasible in
a standalone, development environment.

Text messaging is the default and is configured in the XML files in Table 2–3. Text
messaging is enabled in the <file> subelement the <log> element of the XML files,
except the http-web-site.xml file. For the http-web-site.xml file, the text
messaging is enabled with the <access-log> element. To turn off text messaging,
eliminate or comment out the <file> or <access-log> element. If you do not
remove this line and enable ODL logging, you will have both logging facilities
turned on. The location and filename for text messaging does have defaults, as
shown in Table 2–4, but you can specify the location and filename within the path
attribute of the <log> or <access-log> elements.

Table 2–4 shows the default location for the log files for a standalone OC4J. You can
modify the location and names of these files by modifying the configuration files
described in Table 2–3.

Enabling OC4J Logging

Advanced Configuration, Development, and Deployment 2-29

The location of all of the above log files can be specified, except the web-access.log
file, using the <log> element in the respective configuration files. You can specify
either absolute paths or paths relative to the j2ee/home/config directory. For
example, specify the server log file in the server.xml configuration file, as follows:

<log>
<file path="../log/my-server.log" />
</log>

You can also specify an absolute path for the location of the log file, as follows:

<log>
<file path="d:\log-files\my-server.log" />
</log>

Oracle Diagnostic Logging (ODL) Log Files
The ODL log entries are each written out in XML format in its respective log file.
Each XML message can be read through your own XML reader. The advantages for
ODL logging is that the log files and the directory have a maximum limit. When the
limit is reached, the log files are overwritten.

When you enable ODL logging, each new message goes into the current log file,
named log.xml. When the log file is full—that is, the log file size maximum is
reached—then it is copied to an archival log file, named logN.xml, where N is a
number starting at one. When the last log file is full, the following occurs:

1. The least recent log file is erased to provide space in the directory.

2. The log.xml file is written to the latest logN.xml file, where N increments by
one over the most recent log file.

Table 2–4 OC4J Standalone Log File Locations

 Log File Default Location

application.log install_dir/j2ee/home/application-deployments/<application-name>

global-application.log install_dir/j2ee/home/log

jms.log install_dir/j2ee/home/log

rmi.log install_dir/j2ee/home/log

server.log install_dir/j2ee/home/log

web-access.log The location is configurable from *-web-site.xml with the <access-log>
element, as follows: <access-log path="../log/http-web-access.log" />

Enabling OC4J Logging

2-30 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Thus, your log files are constantly rolling over and do not encroach on your disk
space.

Within each XML file listed in Table 2–3, you enable ODL logging by
uncommenting the ODL configuration line, as follows:

■ Uncomment the <odl> element within the <log> element in all XML files listed
in Table 2–3, except for the http-web-site.xml file.

■ Uncomment the <odl-access-log> element in the http-web-site.xml file.

The attributes that you can configure are:

■ path: Path and folder name of the log folder for this area. You can use an
absolute path or a path relative to where the configuration XML file exists,
which is normally in the j2ee/home/config directory. This denotes where the
log files will reside for the feature that the XML configuration file is concerned
with. For example, modifying this element in the server.xml file denotes where
the server log files are written.

■ max-file-size: The maximum size in KB of each individual log file.

■ max-directory-size: The maximum size of the directory in KB.

New files are created within the directory, until the maximum directory size is
reached. Each log file is equal to or less than the maximum specified in the
attributes.

Thus, to specify log files of 1000 KB and a maximum of 10,000 KB for the directory
in the <install-dir>/j2ee/home/log/server directory in the server.xml file,
configure the following:

<log>
<odl path="../log/server/" max-file-size="1000" max-directory-size="10000" />
</log>

When OC4J is executing, all log messages that are server oriented are logged in the
<install-dir>/j2ee/home/log/server directory.

The XML message that is logged is of the following format:

<MESSAGE>
<HEADER>
<TSTZ_ORIGINATING>2002-11-12T15:02:07.051-08:00</TSTZ_ORIGINATING>
<COMPONENT_ID>oc4j</COMPONENT_ID>
<MSG_TYPE TYPE="ERROR"></MSG_TYPE>
<MSG_LEVEL>1</MSG_LEVEL>
<HOST_ID>myhost</HOST_ID>

OC4J Debugging

Advanced Configuration, Development, and Deployment 2-31

<HOST_NWADDR>001.11.22.33</HOST_NWADDR>
<PROCESS_ID>null-Thread[Orion Launcher,5,main]</PROCESS_ID>
<USER_ID>dpda</USER_ID>
</HEADER>
<PAYLOAD>
<MSG_TEXT>java.lang.NullPointerException at
com.evermind.server.ApplicationServer.setConfig(ApplicationServer.java:1070)
at com.evermind.server.ApplicationServerLauncher.run
(ApplicationServerLauncher.java:93) at java.lang.Thread.run(Unknown Source)
</MSG_TEXT>
</PAYLOAD>
</MESSAGE/>

You can have both the ODL and text logging turned on. To save on disk space, you
should turn off one of these options. If you decide to enable ODL logging, turn off
the text logging functionality by commenting out the <file> subelement of the
<log> element for all XML files except the http-web-site.xml file. For the
http-web-site.xml file, turn off the text logging by commenting out the
<access-log> element.

Redirecting Standard Out and Standard Error
Many developers use the System.out.println() and System.err.println()
methods in their applications to generate debug information. Normally, the output
from these method calls are printed to the console where the OC4J process is
started. However, you can specify command-line options when starting OC4J to
direct the STDOUT and STDERR output directly to files. The -out and -err parameters
inform OC4J where to direct the error messages. The following startup command
includes and example of the -out and -err parameters:

$ java -jar oc4j.jar -out d:\log-files\oc4j.out -err d:\log-files\oc4j.err

In this case, all information written to STDOUT and STDERR is printed to the files
d:\log-files\oc4j.out and d:\log-files\oc4j.err respectively.

OC4J Debugging
OC4J provides several debug properties for generating additional information on
the operations performed by the various sub-systems of OC4J. These debug
properties can be set for a particular sub-system while starting up OC4J.

OC4J Debugging

2-32 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

The following table provides useful debug options that available with OC4J. These
debug options have two states either true or false. By default these are set to false.
For a complete list of debug properties, see "OC4J System Properties" on page A-44.

Note: Turning on excessive debug options can slow down the
execution of your applications and use large amounts of disk space
with the contents of the log files.

Table 2–5 HTTP Debugging Options

HTTP Debugging Description of Option

http.session.debug Provides information about HTTP session events

http.request.debug Provides information about each HTTP request

http.error.debug Prints all HTTP errors

http.method.trace.allow Default: false. If true, turns on the trace HTTP method.

Table 2–6 JDBC Debugging Options

JDBC Debugging Description of Option

datasource.verbose Provides verbose information on creation of data source and
connections using Data Sources and connections released to the
pool, and so on,

jdbc.debug Provides very verbose information when JDBC calls are made

Table 2–7 RMI Debugging Options

RMI Debugging Description of Options

rmi.debug Prints RMI debug information

rmi.verbose Provides very verbose information on RMI calls

Table 2–8 OracleAS Web Services Debugging Options

OracleAS Web Services Debugging Description of Options

ws.debug Turns on OracleAS Web Services debugging

OC4J Debugging

Advanced Configuration, Development, and Deployment 2-33

For example, if you want to generate debug information on HTTP session events
then you start OC4J, as follows:

java -Dhttp.session.debug=true -jar oc4j.jar

After OC4J is started with a specific debug option, debug information is generated
and routed to standard output. In the above example, you would see HTTP session
information on your OC4J console, as follows:

Oracle Application Server Containers for J2EE initialized
Created session with id '36c04d8a1cd64ef2b6a9ba6e2ac6637e' at Mon Apr 15
12:24:20 PDT 2002, secure-only: false
Created session with id '36c04d8a1cd64ef2b6a9ba6e2ac6637e' at Mon APR 15
12:36:06 PDT 2002, secure-only: false
Invalidating session with id '36c04d8a1cd64ef2b6a9ba6e2ac6637e' at Mon APR 15
12:44:32 PDT 2002 (created at Mon APR 15 12:24:23 PDT 2002) due to timeout

If you want to save this debug information, then you can redirect your standard
output to a file using the -out or -err command-line options, as follows:

java -Dhttp.session.debug=true -jar oc4j.jar -out oc4j.out -err oc4j.err

In addition to the specific sub-system switches, you can also start OC4J with a
supplied verbosity level. The verbosity level is an integer between 1 and 10. The
higher the verbosity level, the more information that is printed in the console. You
specify the verbosity level with the -verbosity OC4J option in the OC4J
command-line options section. The following examples show the output with and
without verbosity:

Example 2–4 Error Messages Displayed Without Veribosity

D:\oc4j903\j2ee\home>java -jar oc4j.jar
Oracle Application Server Containers for J2EE initialized

Example 2–5 Error Messages Displayed With Verbosity Level of 10

D:\oc4j903\j2ee\home>java -jar oc4j.jar -verbosity 10
Application default (default) initialized...
Binding EJB work.ejb.WorkHours to work.ejb.WorkHours...
Application work (work) initialized...
Application serv23 (Servlet 2.3 New Features Demo) initialized...
Web-App default:defaultWebApp (0.0.0.0/0.0.0.0:8888) started...
Oracle Application Server Containers for J2EE initialized

OC4J Debugging

2-34 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Servlet Debugging Example
You deployed a Web application to OC4J that is having some problems with
servlets. You are losing the client session when you use a pre-configured data
source to make database connection. You want to know what OC4J is doing when
the servlet is accessing the data source. In order to generate the debug information
on HTTP Session and data source usage, you must set two debug options -
http.session.debug and datasource.verbose to true.

java -Dhttp.session.debug=true -Ddatasource.verbose=true -jar oc4j.jar

Then, re-execute your servlet and see the following type of debug information in
the standard output for the OC4J process:

DataSource logwriter activated... jdbc:oracle:thin:@localhost:1521:ORCL:
Started
jdbc:oracle:thin:@localhost:1521:ORCL: Started
Oracle Application Server Containers for J2EE initialized
Created session with id '4fa5eb1b9a564869a426e8544963754f' at Tue APR 23
16:22:56 PDT 2002, secure-only: false
Created new physical connection: XA XA OC4J Pooled
jdbc:oracle:thin:@localhost:1521:ORCL
null: Connection XA XA OC4J Pooled jdbc:oracle:thin:@localhost:1521:ORCL
allocated (Pool size: 0)
jdbc:oracle:thin:@localhost:1521:ORCL: Opened connection
Created new physical connection: Pooled
oracle.jdbc.driver.OracleConnection@5f18
Pooled jdbc:oracle:thin:@localhost:1521:ORCL: Connection Pooled
oracle.jdbc.driver.OracleConnection@5f1832 allocated (Pool size: 0)
Pooled jdbc:oracle:thin:@localhost:1521:ORCL: Releasing connection Pooled
oracle.jdbc.driver.OracleConnection@5f1832 to pool (Pool size: 1)
null: Releasing connection XA XA OC4J Pooled
jdbc:oracle:thin:@localhost:1521:ORCL to pool (Pool size: 1)
OC4J Pooled jdbc:oracle:thin:@localhost:1521:ORCL: Cache timeout, closing
connection (Pool size: 0)
com.evermind.sql.OrionCMTDataSource/default/jdbc/OracleDS: Cache timeout,
closing connection (Pool size: 0)

Data Sources Primer 3-1

3
Data Sources Primer

This chapter describes how to use the pre-installed default data source in your OC4J
application. A data source, which is the instantiation of an object that implements
the javax.sql.DataSource interface, enables you to retrieve a connection to a
database server.

 This chapter covers the following topics:

■ Introduction

■ Definition of Data Sources

■ Retrieving a Connection From a Data Source

For more information on data sources, see the DataSources chapter in the Oracle
Application Server Containers for J2EE Services Guide.

Introduction

3-2 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Introduction
A data source is a Java object that has the properties and methods specified by the
javax.sql.DataSource interface. Data sources offer a portable,
vendor-independent method for creating JDBC connections. Data sources are
factories that return JDBC connections to a database. J2EE applications use JNDI to
look up DataSource objects. Each JDBC 2.0 driver provides its own
implementation of a DataSource object, which can be bound into the JNDI
namespace. Once bound, you can retrieve this data source object through a JNDI
lookup.

Because they are vendor-independent, we recommend that J2EE applications
retrieve connections to data servers using data sources.

Definition of Data Sources
OC4J data sources exist in an XML file known as data-sources.xml.

Defining Location of the DataSource XML Configuration File
Your application can know about the data sources defined in this file only if the
application.xml file knows about it. The path attribute in the
<data-sources> element in the application.xml file must contain the name
and path to your data-sources.xml file, as follows:

<data-sources
 path = "data-sources.xml"
/>

The path attribute of the <data-sources> element contains both path and name
of the data-sources.xml file. The path can be fixed, or it can be relative to where
the application.xml is located. Both the application.xml and
data-sources.xml files are located in
j2ee/home/config/application.xml. Thus, the path contains only the name
of the data-sources.xml file.

Defining Data Sources
The j2ee/home/config/data-sources.xml file is pre-installed with a default
data source. For most uses, this default is all you will need. However, you can also
add your own customized data source definitions.

The default data source is an emulated data source. That is, it is a wrapper around
Oracle data source objects. You can use this data source for applications that access

Definition of Data Sources

Data Sources Primer 3-3

and update only a single data server. If you need to update more than one database
and want these updates to be included in a JTA transaction, you must use a
non-emulated data source. See the Data Sources chapter in the Oracle Application
Server Containers for J2EE Services Guide for more information.

This data source is extremely fast and efficient, because it does not require any JTA
or XA operations. These would be necessary if you were to manage more than a
single database.

The following is the default data source definition that you can use for most
applications:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="hr"
 password="hr"
 url="jdbc:oracle:thin:@myhost:1521:ORCL"
 inactivity-timeout="30"
/>

■ The class attribute defines the type of data source you want to use.

■ The location, xa-location, and ejb-location attributes are JNDI names
that this data source is bound to within the JNDI namespace. We recommend
that you use only the ejb-location JNDI name in the JNDI lookup for
retrieving this data source.

■ The connection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

■ The URL, username, and password identify the database, its username, and
password.

Alternatively, you can use the admin.jar command to install the data source as
follows:

Note: Instead of providing the password in the clear, you can use
password indirection. For details, see the Oracle Application Server
Containers for J2EE Services Guide.

Retrieving a Connection From a Data Source

3-4 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

% java -jar admin.jar ormi://myhost admin welcome
-application myapp -installDataSource -jar $ORACLE_HOME/jdbc/classes12.jar
-url jdbc:oracle:thin:@myhost:1521:ORCL
-connectionDriver oracle.jdbc.driver.OracleDriver
-location jdbc/DefaultOracleDS -username hr -password hr

\

See "Options for the OC4J Administration Management JAR" on page A-34 for a full
description of the required parameters for this option.

The Data Sources chapter in the Oracle Application Server Containers for J2EE Services
Guide fully describes all attributes.

Retrieving a Connection From a Data Source
One way to modify data in your database is to retrieve a JDBC connection and use
JDBC or SQLJ statements. We recommend that you use data source objects in your
JDBC operations.

Do the following to modify data within your database:

1. Retrieve the DataSource object through a JNDI lookup on the data source
definition in the data-sources.xml file.

The lookup is performed on the logical name of the default data source, which
is an emulated data source that is defined in the ejb-location element in the
data-sources.xml file.

You must always cast or narrow the object that JNDI returns to the
DataSource, because the JNDI lookup() method returns a Java object.

2. Create a connection to the database represented by the DataSource object.

Once you have the connection, you can construct and execute JDBC statements
against this database specified by the data source.

The following code represents the preceding steps:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection conn = ds.getConnection();

Note: You must restart OC4J after you modify the
data-sources.xml file.

Retrieving a Connection From a Data Source

Data Sources Primer 3-5

Use the following methods of the DataSource object in your application code to
retrieve the connection to your database:

■ getConnection();

The username and password are those defined in the data source definition.

■ getConnection(String username, String password);

This username and password overrides the username and password defined in
the data source definition.

You can cast the connection object returned on the getConnection method to
oracle.jdbc.OracleConnection and use all the Oracle extensions. This is
shown below:

oracle.jdbc.OracleConnection conn =
(oracle.jdbc.OracleConnection) ds.getConnection();

Once retrieved, you can execute SQL statements against the database either through
SQLJ or JDBC.

For more information, see the Data Sources chapter in the Oracle Application Server
Containers for J2EE Services Guide.

Retrieving a Connection From a Data Source

3-6 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Servlet Prim
4

Servlet Primer

Oracle Application Server Containers for J2EE (OC4J) includes a servlet container
that is fully compliant with the servlet 2.3 specification. This chapter covers the
basics of running servlet applications in the OC4J environment. There is also a brief
servlet review, although it is assumed that you are at least somewhat familiar with
servlet technology.

There are a few assumptions before you try running the primers. See "Introduction
to OC4J Standalone" on page 1-2.

This chapter includes the following sections:

■ A Brief Overview of Servlet Technology

■ Running a Simple Servlet

■ Running a Data-Access Servlet

For more information, see the Oracle Application Server Containers for J2EE Servlet
Developer’s Guide.
er 4-1

A Brief Overview of Servlet Technology
A Brief Overview of Servlet Technology
The following sections provide a quick servlet overview:

■ What Is a Servlet?

■ Servlet Portability

■ The Servlet Container

■ Request and Response Objects

■ Learning More About Servlets

What Is a Servlet?
In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic Web pages. A servlet is a Java program that
runs in a Web server (as opposed to an applet, which is a Java program that runs in
a client browser). Typically, the servlet takes an HTTP request from a browser,
generates dynamic content (such as by querying a database), and provides an HTTP
response back to the browser. Alternatively, it can be accessed directly from another
application component, or send its output to another component. Most servlets
generate HTML text, but a servlet might instead generate XML to encapsulate data.

More specifically, a servlet runs in a J2EE application server, such as OC4J. Servlet is
one of the main application component types of a J2EE application, along with
JavaServer Pages (JSP) and Enterprise JavaBeans (EJB), which are also server-side
J2EE component types. These are used in conjunction with client-side components
such as applets (part of the Java 2 Standard Edition specification) and application
client programs. An application might consist of any number of any of these
components.

Using Java servlets allows you to use the standard servlet API for programming
convenience, and enables you to employ any of the numerous standard Java and
J2EE features and services, including JDBC to access a database, RMI to call remote
objects, or JMS to perform asynchronous messaging.

Servlets outperform previous means of generating dynamic HTML. Once a servlet
is loaded into memory, it is able to run as a single lightweight thread. The ability to
run as a continuous process has led to servlets largely replacing older technologies
such as server-side includes and CGI as a means of running code in the server.
4-2 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

A Brief Overview of Servlet Technology
Servlet Portability
Because servlets are written in the Java programming language, they are supported
on any platform that has a Java virtual machine and has a Web server and J2EE
containers. You can use servlets on different platforms without recompiling, and
you can package servlets together with associated files such as graphics, sounds,
and other data to make a complete Web application. This greatly simplifies
application development.

A servlet-based application that was developed to run on any J2EE-compliant
application server can be ported to OC4J with little effort.

The Servlet Container
Unlike a Java client program, a servlet has no static main() method. Therefore, a
servlet must execute under the control of an external container.

Servlet containers, sometimes referred to as servlet engines, execute and manage
servlets. It is the servlet container that calls servlet methods and provides services
that the servlet needs when executing. A servlet container is usually written in Java
and is either part of a Web server (if the Web server is also written in Java) or
otherwise associated with and used by a Web server. OC4J includes a fully
standards-compliant servlet container.

The servlet container provides the servlet easy access to properties of the HTTP
request, such as its headers and parameters. When a servlet is called or invoked, the
Web server passes the HTTP request to the servlet container. The container, in turn,
passes the request to the servlet.

Figure 4–1 illustrates the communication path between a client (such as a Web
browser), the Web listener in the Web server, the servlet container, a servlet, and a
back-end database.
Servlet Primer 4-3

A Brief Overview of Servlet Technology
Figure 4–1 Servlet and the Servlet Container

 Request and Response Objects
In Java, an HTTP request is represented by an instance of a class that implements
the standard javax.servlet.http.HttpServletRequest interface. Similarly,
an instance of a class that implements the
javax.servlet.http.HttpServletResponse interface is used for an HTTP
response. These interfaces specify methods to be used in processing requests and
responses.

A servlet extends one of two standard servlet base classes:
javax.servlet.GenericServlet or javax.servlet.http.HttpServlet. Key
HttpServlet methods such as doGet(), to process an HTTP GET request, and
doPost(), to process an HTTP POST request, take an HttpServletRequest instance
and an HttpServletResponse instance as input parameters. The servlet container
passes these objects to the servlet and receives the response back from the servlet to
pass on to the client or to another server object such as an EJB.

The servlet overrides the access methods implemented in GenericServlet and
HttpServlet classes, as appropriate, in order to process the request and return the

O
_1

07
6

Web listener

Servlet Container

Client

Servlet

Request Response

Data Source

JDBC Connection
4-4 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Running a Simple Servlet
response as desired. For example, most servlets override the doGet() and doPost()
methods (or both) of HttpServlet.

Learning More About Servlets
For a first step in learning more about servlets, see the Oracle Application Server
Containers for J2EE Servlet Developer’s Guide. This guide tells you what you need to
know to develop servlets and Web applications in the OC4J environment.

For complete documentation of the J2EE APIs, including servlets, visit the Sun
Microsystems Web site at:

http://java.sun.com/j2ee/docs.html

You can also find a great deal of tutorial information there about servlets as well as
other aspects of J2EE application development.

Running a Simple Servlet
A good way to learn about servlets and how to code them is to view a basic servlet
example. This section shows you how to create and run a simple "Hello World"
servlet.

Create the Hello World Servlet
Here is the Hello World code, showing the basic servlet framework. This servlet just
prints "Hi There!" back to the client browser. The numbered comments along the
right side correspond to the code notes below.

Save this servlet in a file called HelloWorldServlet.java and compile it.

import java.io.*; // 1
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet { // 2

Note: Before compiling the servlet, be sure that servlet.jar,
supplied with OC4J, is in your classpath. This contains the Sun
Microsystems javax.servlet and javax.servlet.http
packages.
Servlet Primer 4-5

Running a Simple Servlet
 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException { // 3
 resp.setContentType("text/html"); // 4

 ServletOutputStream out = resp.getOutputStream(); // 5
 out.println("<html>"); // 6
 out.println("<head><title>Hello World</title></head>");
 out.println("<body>");
 out.println("<h1>Hi There!</h1>");
 out.println("</body></html>");
 }
}

Code Notes

1. You must import at least java.io.*, javax.servlet.*, and
javax.servlet.http.* for any servlet you write. Additional packages are
needed for SQL operations or to support Oracle JDBC drivers.

2. The servlet extends the HttpServlet class, which has base implementations of
the methods that a servlet uses in processing HTTP requests and responses.

3. The doGet() method, which services HTTP GET requests, overrides the base
implementation in HttpServlet. Like almost all HttpServlet methods, doGet()
takes a request object and a response object as parameters. In this example, no
methods are called on the request object (req), because this example requires no
input data (that is, request data).

4. The servlet calls the setContentType() method of the response object to set the
response content MIME type in the header. Here it is text/html.

5. The getOutputStream() method of the response object (resp) is called to get
an output stream to use in sending the output from the server back to the client.
Alternatively, you could call the getWriter() method to get a
java.io.PrintWriter object.

6. The remainder of the servlet consists of output statements with HTML code to
write a simple Web page to display "Hi There!" in a Heading 1 (<h1>) format.
The Web browser will display this output when it receives the response object
from the server.

Deploy the Hello World Servlet
For convenience, simply place HelloWorldServlet.java and
HelloWorldServlet.class in the
4-6 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Running a Simple Servlet
j2ee/home/default-web-app/WEB-INF/classes directory. This is the location in
which the container finds servlets for the default Web application. (The default Web
application is a WAR file that is automatically deployed when you install OC4J. It
consists of various Web pages of static and dynamic content, so that OC4J has pages
available to execute when first installed.)

Run the Hello World Servlet
Assuming you use the OC4J default Web application, which has a context path of
"/", you can run the Hello World servlet with a URL such as the following:

http://host:port/servlet/HelloWorldServlet

By default, OC4J standalone uses port 8888.

The /servlet part of the URL employs an OC4J feature that starts up a servlet,
such as HelloWorldServlet in this case, according to its class name. The
servlet-webdir attribute in the <orion-web-app> element of the
global-web-application.xml file or orion-web.xml file defines this special
URL component. Anything following it in the URL is assumed to be a servlet class
name, including applicable package information, within the appropriate servlet
context. By default in OC4J, the setting for this URL component is "/servlet".

Automatic Compilation
For easier test development, use the OC4J auto-compile feature. Set
development="true" in the <orion-web-app> element of the
global-web-application.xml configuration file, as follows:

<orion-web-app ... development="true" ... >
 ...
</orion-web-app>

If development is set to "true", then each time you change the servlet (the
.java or .class file) and save it in a particular directory, or change the web.xml

Important: Invoking a servlet in this way is recommended only
for development and testing scenarios. Allowing the invocation of
servlets by class name presents a significant security risk; OC4J
should not be configured to operate in this mode in a production
environment. See the Oracle Application Server Containers for J2EE
Servlet Developer’s Guide for information.
Servlet Primer 4-7

Running a Data-Access Servlet
file, the OC4J server automatically redeploys (essentially, restarts) the servlet or Web
application. A modified .java file is also automatically recompiled upon first
access.

The directory is determined by the setting of the source-directory attribute of
<orion-web-app>. The default is "WEB-INF/src" if it exists, otherwise
"WEB-INF/classes".

Running a Data-Access Servlet
The HelloWorldServlet example shows a minimal servlet with only static output.
The power of servlets, however, comes from the ability to retrieve data from a
database, generate dynamic content based on the data, and send that content to the
client. (Of course, a servlet can also update a database, based upon information
passed to it in the HTTP request.)

In this next example, a servlet gets some information from the client (the Web
browser), uses this information in constructing a database query, and reports the
query results back to the client.

Although there are many ways that a servlet can get information from its client, this
example uses a very common method: reading a query string from the HTTP
request.

Create the HTML Form
First, create an HTML page that acts as the front end for the servlet. This page
includes an HTML form through which the end user specifies the query parameters.

Enter or copy the following text into a file and name the file EmpInfo.html.

<html>

<head>
<title>Query the Employees Table</title>
</head>

<body>
<form method=GET ACTION="/hello/servlet/GetEmpInfo">

Note: This example works only if the HR schema has been
installed in the Oracle database. This schema is part of the sample
Common Schemas set available with Oracle9i.
4-8 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Running a Data-Access Servlet
The query is

SELECT LAST_NAME, EMPLOYEE_ID FROM EMPLOYEES WHERE LAST NAME LIKE ?.<p>

Enter the WHERE clause ? parameter (use % for wildcards).

Example: 'S%':

<input type=text name="queryVal">
<p>
<input type=submit>
</form>

</body>
</html>

Create the GetEmpInfo Servlet
The servlet called by the preceding HTML page constructs a SELECT statement
(query), with the end user being prompted for the WHERE clause to complete the
SELECT statement. For database access, this example uses JDBC connection, result
set, and statement objects. If you are not familiar with JDBC, see the Oracle9i JDBC
Developer’s Guide and Reference.

This code also assumes default OC4J data source configuration in the
data-sources.xml file, as in the following example:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="hr"
 password="hr"
 url="jdbc:oracle:thin:@localhost:1521:orcl"
 inactivity-timeout="30"
/>

Note: For the URL, change localhost to an appropriate host
name (such as according to the hosts file on UNIX), as applicable.
Change orcl to the name of the Oracle database instance, if
different.
Servlet Primer 4-9

Running a Data-Access Servlet
For introductory information about data sources, see Chapter 3, "Data Sources
Primer". For further information, see the Oracle Application Server Containers for J2EE
Services Guide.

Here is the code for the servlet. Numbered comments along the right side
correspond to the code notes below.

Enter or copy the code into a file called GetEmpInfo.java and compile it.

import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*; // 1
import javax.sql.*; // 2
import java.sql.*;
import java.io.*;

public class GetEmpInfo extends HttpServlet {

 DataSource ds = null;
 Connection conn = null;

 public void init() throws ServletException { // 3
 try {
 InitialContext ic = new InitialContext(); // 4
 ds = (DataSource) ic.lookup("jdbc/OracleDS"); // 5
 conn = ds.getConnection(); // 6
 }
 catch (SQLException se) { // 7
 throw new ServletException(se);
 }
 catch (NamingException ne) { // 8
 throw new ServletException(ne);
 }
 }

 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 String queryVal = req.getParameter("queryVal"); // 9
 String query = //10
 "select last_name, employee_id from employees " +
 "where last_name like " + queryVal;

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();
4-10 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Running a Data-Access Servlet
 out.println("<html>");
 out.println("<head><title>GetEmpInfo</title></head>");
 out.println("<body>");

 try {
 Statement stmt = conn.createStatement(); //11
 ResultSet rs = stmt.executeQuery(query); //12

 out.println("<table border=1 width=50%>");
 out.println("<tr><th width=75%>Last Name</th><th width=25%>Employee " +

 "ID</th></tr>");

 int count=0;
 while (rs.next()) { //13
 count++;
 out.println("<tr><td>" + rs.getString(1) + "</td><td>" +rs.getInt(2) +
 "</td></tr>");

 }
 out.println("</table>");
 out.println("<h3>" + count + " rows retrieved</h3>");

 rs.close(); //14
 stmt.close();
}
 catch (SQLException se) { //15
 se.printStackTrace(out);
 }

 out.println("</body></html>");
 }

 public void destroy() { //16
 try {
 conn.close();
 }
 catch (SQLException se) { //15
 se.printStackTrace();
 }
 }
}

Code Notes

1. Import javax.naming.* to support the JNDI API.
Servlet Primer 4-11

Running a Data-Access Servlet
2. Import JDBC standard interfaces in java.sql and extended interfaces in
javax.sql (for support of data sources and connection pooling).

3. Override the HttpServlet init() method.

4. Get a JNDI initial context. For more information about using JNDI with OC4J,
see the Oracle Application Server Containers for J2EE Services Guide.

5. Look up the data source with the JNDI name jdbc/OracleDS, which is
configured by default in the data-sources.xml file.

6. Use the data source to get a connection to the database.

7. Catch any SQL exception from the connection attempt, and throw it as a
ServletException instance.

8. Catch any JNDI naming exception and throw it as a ServletException
instance.

9. Get the parameter that was passed in the request from the HTML form. This is
the WHERE clause for the query.

10. Construct a SQL query using the WHERE clause specified by the user.

11. Create a JDBC statement object.

12. Execute the query, with the results going into a JDBC result set object.

13. Loop through the rows of the result set. Use the result set getString() and
getInt() methods to get the particular data values and then output the values
to the browser.

14. Close the result set and statement.

15. Catch any SQL exceptions from the query, processing of the result set, or closing
of the statement object or connection object (two locations). Print the stack trace.

16. The destroy() method closes the database connection.

Deploy GetEmpInfo and the HTML Page
As for the Hello World example earlier in this chapter, you can place
GetEmpInfo.java and GetEmpInfo.class into the
j2ee/home/default-web-app/WEB-INF/classes director for the default Web
application.

Place EmpInfo.html into the /WEB-INF directory.
4-12 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Running a Data-Access Servlet
Run GetEmpInfo
Assuming you use the OC4J default Web application, which has a context path of
"/", you can access the front-end HTML page for the GetEmpInfo servlet with a
URL such as the following:

http://host:port/EmpInfo.html

When your browser invokes this page, you should see output like the following:

Pressing Submit Query calls the GetEmpInfo servlet. If you first enter ’S%’ (for
example) in the form for the WHERE clause, you will get the following results:
Servlet Primer 4-13

Running a Data-Access Servlet
4-14 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

5

JSP Primer

Oracle Application Server Containers for J2EE (OC4J) includes a JavaServer Pages
(JSP) container that is fully compliant with the JSP 1.2 specification. This chapter
covers the basics of running JSP applications in the OC4J environment. There is also
a brief JSP review, although it is assumed that you are at least somewhat familiar
with JSP technology.

There are a few assumptions before you try running the primers. See "Introduction
to OC4J Standalone" on page 1-2.

This chapter includes the following sections:

■ A Brief Overview of JavaServer Pages Technology

■ Running a Simple JSP Page

■ Running a JSP Page That Invokes a JavaBean

■ Running a JSP Page That Uses Custom Tags

For a complete description of Web application deployment, see "Deploying
Applications" on page 1-19.

For detailed information about the Oracle JSP implementation, refer to the Oracle
Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide .
JSP Primer 5-1

A Brief Overview of JavaServer Pages Technology
A Brief Overview of JavaServer Pages Technology
Here is a quick JSP overview in the following sections:

■ What Is JavaServer Pages Technology?

■ JSP Translation and Runtime Flow

■ Key JSP Advantages

■ Overview of Oracle Value-Added Features for JSP Pages

What Is JavaServer Pages Technology?
JavaServer Pages, a part of the J2EE platform, is a technology that provides a
convenient way to generate dynamic content in pages that are output by a Web
application. This technology, which is closely coupled with Java servlet technology,
allows you to include Java code snippets and calls to external Java components
within the HTML code, or other markup code such as XML, of your Web pages. JSP
technology works nicely as a front-end for business logic and dynamic functionality
encapsulated in JavaBeans and Enterprise JavaBeans (EJB).

Traditional JSP syntax within HTML or other code is designated by being enclosed
within <%...%> syntax. There are variations on this: <%=...%> to designate
expressions or <%!...%> to designate declarations, for example.

A JSP page is translated into a Java servlet, typically at the time that it is requested
from a client. The JSP translator is triggered by the .jsp file name extension in a
URL. The translated page is then executed, processing HTTP requests and
generating responses similarly to any other servlet. Coding a JSP page is more
convenient than coding the equivalent servlet.

JSP pages are fully interoperable with servlets. A JSP page can include output from
a servlet or forward to a servlet, and a servlet can include output from a JSP page or
forward to a JSP page.

Here is the code for a simple JSP page, welcomeuser.jsp:

Note: The JSP 1.2 specification introduces an XML-compatible JSP
syntax as an alternative to the traditional syntax. This allows you to
produce JSP pages that are syntactically valid XML documents. The
XML-compatible syntax is described in the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide.
5-2 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

A Brief Overview of JavaServer Pages Technology
<HTML>
<HEAD><TITLE>The Welcome User JSP</TITLE></HEAD>
<BODY>
<% String user=request.getParameter("user"); %>
<H3>Welcome <%= (user==null) ? "" : user %>!</H3>
<P> Today is <%= new java.util.Date() %>. Have a fabulous day! :-)</P>
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This JSP page will produce something like the following output if the user inputs
the name "Amy":

Welcome Amy!

Today is Wed Jun 21 13:42:23 PDT 2000. Have a fabulous day! :-)

JSP Translation and Runtime Flow
Figure 5–1 shows the flow of execution when a user runs a JSP page, specifying its
URL in the browser. Assume that Hello.jsp accesses a database.

Because of the .jsp file name extension, the following steps occur automatically:

1. The JSP translator is invoked, translating Hello.jsp and producing the file
Hello.java.

2. The Java compiler is invoked, creating Hello.class.

3. Hello.class is executed as a servlet, using the JSP runtime library.

4. The Hello class accesses the database through JDBC (or perhaps SQLJ), as
appropriate, and sends its output to the browser.
JSP Primer 5-3

A Brief Overview of JavaServer Pages Technology
Figure 5–1 JSP Translation and Runtime Flow

Key JSP Advantages
For most situations, there are at least two general advantages to using JSP pages
instead of servlets:

■ Coding convenience: JSP syntax provides a shortcut for coding dynamic Web
pages, typically requiring much less code than equivalent servlet code. The JSP
translator also automatically handles some servlet coding overhead for you,
such as implementing standard JSP or servlet interfaces and creating HTTP
sessions. JSP tag libraries, typically supplied with J2EE products such as OC4J,
provide even further programming convenience.

■ Separation of static content and dynamic content: Realistically, a JSP developer
will need some knowledge of Java. However, JSP technology attempts to allow
some separation between the HTML code development for static content, and
the Java code development for business logic and dynamic content. This makes
JSP programming accessible and attractive to Web designers, as it simplifies the
division of maintenance responsibilities between presentation and layout
specialists who might be more proficient in HTML than in Java, and code
specialists who might be more proficient in Java than in HTML. In a typical JSP
page, most Java code and business logic will not be within snippets embedded

How is a JSP Served?

http://host:port/Hello.jsp

JSP
Translator

Java
Compiler

OC4J Servlet
Runner

Oracle

JDBC

JSP
Source

Hello.jsp

Generated
file

Hello.java

Servlet class
Hello

JSP runtime

Output
of Hello

HTML/XML

O
_1

01
7

5-4 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

A Brief Overview of JavaServer Pages Technology
in the JSP page. Instead, business logic will be in JavaBeans or Enterprise
JavaBeans that are invoked from the JSP page.

Overview of Oracle Value-Added Features for JSP Pages
The OC4J JSP implementation provides the following extended functionality
through custom tag libraries and custom JavaBeans and classes that are generally
portable to other JSP environments. These features are documented in the Oracle
Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference.

■ Support for the JavaServer Pages Standard Tag Library (JSTL)

■ Extended types implemented as JavaBeans that can have a specified scope

■ JspScopeListener for event-handling

■ Integration with XML and XSL

■ Data-access tag library (sometimes referred to as "SQL tags") and JavaBeans

■ The JSP Markup Language (JML) custom tag library, which reduces the level of
Java proficiency required for JSP development

■ Oracle Personalization tag library

■ OracleAS Web Services tag library

■ Tag libraries and JavaBeans for uploading files, downloading files, and sending
e-mail from within an application

■ EJB tag library

■ Additional utility tags (such as for displaying dates and currency amounts
appropriately for a specified locale)

In addition, the OC4J JSP container offers integration with caching technologies,
documented in the Oracle Application Server Containers for J2EE JSP Tag Libraries and
Utilities Reference:

■ JESI tags for Edge Side Includes

■ Web Object Cache tags and API

The OC4J JSP container also supports Oracle-specific programming extensions, such
as for globalization support. These are documented in the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide:
JSP Primer 5-5

Running a Simple JSP Page
Running a Simple JSP Page
This section shows you how to run the elementary JSP example from earlier in this
chapter.

Create and Deploy welcomeuser.jsp
Copy or type the sample code from "What Is JavaServer Pages Technology?" on
page 5-2 into a file, and save it as welcomeuser.jsp.

For convenience, you can place this file under the OC4J default Web application, the
base location of which is the j2ee/home/default-web-app directory. For
example, you can place welcomeuser.jsp in the
j2ee/home/default-web-app/examples/jsp directory.

Run welcomeuser.jsp
When specifying a URL to execute a JSP page in OC4J, note the following:

■ By default, OC4J standalone uses port 8888.

■ The context path for the OC4J default Web application is "/".

■ The URL path maps to the directory path beneath the default Web application
directory (or other Web application directory, as applicable).

For example, if you place welcomeuser.jsp in the
j2ee/home/default-web-app/examples/jsp directory, you can run the page
through the OC4J Web server with a URL such as the following:

http://host:port/examples/jsp/welcomeuser.jsp

When you first run the page, you will see something like the following output:
5-6 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Running a JSP Page That Invokes a JavaBean
Submitting a name, such as "Amy", rewrites the URL to indicate the input:

http://host:port/examples/jsp/welcomeuser.jsp?user=Amy

and updates the page:

Running a JSP Page That Invokes a JavaBean
As mentioned earlier, JSP technology works nicely as a front-end for business logic
and dynamic functionality encapsulated in JavaBeans. This section contains the
code for a JavaBean and a JSP page that calls it.

The steps involved are covered in the following sections:

■ Create the JSP: usebean.jsp

■ Create the JavaBean: NameBean.java

■ Deploy usebean.jsp and Namebean.java

■ Run usebean.jsp

Create the JSP: usebean.jsp
This section lists the source for a JSP page that uses the standard JSP jsp:useBean
tag to invoke a JavaBean. To run the code, you can copy or type it into a file called
usebean.jsp. The numbers in JSP comment statements along the right edge
correspond to the notes following the code.

<%@ page import="beans.NameBean" %> <%--1--%>

<jsp:useBean id="pageBean" class="beans.NameBean" scope="page" /><%--2--%>
<jsp:setProperty name="pageBean" property="*" /> <%--3--%>
JSP Primer 5-7

Running a JSP Page That Invokes a JavaBean
<HTML>
<HEAD> <TITLE> The Use Bean JSP </TITLE> </HEAD>
<BODY BGCOLOR=white>

<H3> Welcome to the Use Bean JSP </H3>

<% if (pageBean.getNewName().equals("")) { %>
 I don't know you.
<% } else { %>
 Hello <%= pageBean.getNewName() %> !
<% } %>

<P>May we have your name?
<FORM METHOD=get>
<INPUT TYPE=TEXT name=newName size = 20>
<INPUT TYPE=SUBMIT VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Code Notes

1. This is a JSP construct called a page directive. In this case, it imports the
JavaBean class. (There are other uses for page directives, and other kinds of
directives.)

2. The standard jsp:useBean tag instantiates the JavaBean, specifying the
package name, class name, and instance name. A scope setting of page
specifies that the JavaBean instance is accessible only from the JSP page where it
was created. Other possible scopes are request, session, and application.

3. The standard jsp:setProperty tag sets the values of one or more properties
for the specified bean instance. A property setting of * results in iteration over
the HTTP request parameters, matching bean property names with request
parameter names, and setting bean property values according to the
corresponding request parameter values. In this case, the only bean property is
newName. This corresponds to the newName HTTP request parameter specified
in the HTML forms code in the page. (For use with the jsp:useBean tag, in
addition to the jsp:setProperty tag, there is a jsp:getProperty tag to
retrieve parameter values.)

For general information about any of these topics, see the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide.
5-8 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Running a JSP Page That Invokes a JavaBean
Create the JavaBean: NameBean.java
Here is the code for the JavaBean class, NameBean. The package name specified
here must be consistent with the page directive and the jsp:useBean tag of the
JSP page. To run the JSP page, you can copy or type this code into a file called
NameBean.java and then compile it. The resulting NameBean.class file must be
placed in a beans subdirectory under WEB-INF/classes in the WAR file you use
for deployment, according to the beans package name.

package beans;

public class NameBean {

 String newName="";

 public void NameBean() { }

 public String getNewName() {
 return newName;
 }
 public void setNewName(String newName) {
 this.newName = newName;
 }
}

Deploy usebean.jsp and Namebean.java
As with the earlier JSP example in this chapter, you can place usebean.jsp in the
j2ee/home/default-web-app/examples/jsp directory.

Files for the JavaBean class—NameBean.class and optionally
NameBean.java—should go under the WEB-INF directory, which is a standard
J2EE Web application mechanism. In this case, this would be specifically as follows
(for UNIX, or equivalently for Windows NT):

j2ee/home/default-web-app/WEB-INF/classes/beans

The WEB-INF/classes directory and any subdirectories are automatically in your
Web application classpath. In this example, NameBean.class must be in the
beans subdirectory, because that is the package name specified in the code. You
must create the beans subdirectory.
JSP Primer 5-9

Running a JSP Page That Uses Custom Tags
Run usebean.jsp
With usebean.jsp being in the default-web-app/examples/jsp directory, as
with the earlier example in this chapter, you will use a similar URL to run it from a
browser:

http://host:port/examples/jsp/usebean.jsp

This example, as before, uses host as the name of the system where OC4J and the
application are installed. The default port is 8888.

When you run this page, you will initially see the following output:

Once you submit a name, such as "Ike", the page is updated (but still prompts you
in case you want to enter another name):

Running a JSP Page That Uses Custom Tags
The Sun Microsystems JavaServer Pages specification includes standard tags to use
in JSP pages to perform various tasks. An example is the jsp:useBean tag
employed in "Running a JSP Page That Invokes a JavaBean" on page 5-7. The JSP
5-10 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Running a JSP Page That Uses Custom Tags
specification also outlines a standard framework that allows vendors to offer their
own custom tag libraries in a portable way.

Each custom tag library has a tag library descriptor (TLD) file that specifies the tags,
tag attributes, and other properties of the library. Each tag requires support classes,
at least a tag handler class with the code to execute tag semantics. (Tag handler
classes implement standard tag interfaces, according to the JSP specification.) These
classes must be available to your Web application.

OC4J supplies portable tag libraries with functionality in several areas. This section
shows an example that uses tags from the Oracle data-access (SQL) tag library to
access and query a database and output the results to the browser. A standard JSP
taglib directive is used to access the TLD file and to specify a tag prefix to use for
the tags of this library.

Here are the steps in using a JSP tag library:

The steps involved are covered in the following sections:

■ Create the JSP Page: sqltagquery.jsp

■ Files for Tag Library Support

■ Deploy sqltagquery.jsp

■ Run sqltagquery.jsp

For information about the standard tag library framework, including TLD files, tag
handler classes, and the taglib directive, refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Create the JSP Page: sqltagquery.jsp
This section provides the source for a JSP page that uses data-access tags, supplied
with OC4J, to open a database connection, run a simple query, and output the
results as an HTML table. To run the page, you can copy or type the code into a file
called sqltagquery.jsp. The numbers in JSP comment statements along the right
edge correspond to the notes following the code.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/sqltaglib.tld"
 prefix="sql" %> <%--1--%>
<HTML>
 <HEAD>
 <TITLE>The SQL Tag Query JSP</TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <HR>
JSP Primer 5-11

Running a JSP Page That Uses Custom Tags
 <sql:dbOpen dataSource= "jdbc/OracleDS" > <%--2--%>
 <sql:dbQuery> <%--3--%>
 select * from EMP
 </sql:dbQuery>
 </sql:dbOpen> <%--4--%>
 <HR>
 </BODY>
</HTML>

Code Notes

1. The taglib directive uses a JSP 1.2-style uri value, which is used as a
keyword instead of actually indicating a physical location. (See the Oracle
Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide for information about such URI functionality.) The taglib directive also
specifies the tag prefix, "sql", to use in any tag statements.

2. OracleDS is the JNDI name of a data source that is available by default
through the OC4J data-sources.xml file. Verify that the data source points
to an appropriate database. For introductory information about data sources,
see Chapter 3, "Data Sources Primer".

3. By default, the dbQuery tag uses the database connection established by the
surrounding dbOpen tag. Also by default, the dbQuery tag outputs its results
as an HTML table. Other choices are JDBC result set, XML string, or XML DOM
object.

4. Because no explicit connection ID is specified in the dbOpen start-tag, the
database connection is automatically closed when the dbOpen end-tag is
reached.

For more information about the data-access tag library that is supplied with OC4J,
refer to the Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Files for Tag Library Support
JSP applications require some JAR files that are installed with OC4J:

■ ojsp.jar (JSP container)

■ ojsputil.jar (OC4J tag libraries and utilities)

■ xmlparserv2.jar (XML parser)

■ xsu12.jar (XML-SQL utility)
5-12 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Running a JSP Page That Uses Custom Tags
The tag handler class files and TLD files, including the tag handlers and TLD file
(sqltaglib.tld) for this example, are in ojsputil.jar. Verify that ojsp.jar,
ojsputil.jar, xmlparserv2.jar, and xsu12.jar are available to the Web
application.

Deploy sqltagquery.jsp
As with the earlier JSP examples in this chapter, you can place sqltagquery.jsp
in the j2ee/home/default-web-app/examples/jsp directory.

Run sqltagquery.jsp
With sqltagquery.jsp being in the
j2ee/home/default-web-app/examples/jsp directory, as with earlier
examples in this chapter, you will use a similar URL to run the page from a browser.
This example, as before, uses host as the name of the system where OC4J and the
application are installed:

http://host:port/examples/jsp/sqltagquery.jsp

This assumes that the OC4J Web server is running, and that you have run the
standard SQL scripts for Oracle demos to set up a database. The default port is 8888.

This page produces output such as the following.

Note: The library ojsputil.jar also gives you access to
data-access JavaBeans and other Java utility classes that come with
OC4J. These classes are described in the Oracle Application Server
Containers for J2EE JSP Tag Libraries and Utilities Reference.
JSP Primer 5-13

Running a JSP Page That Uses Custom Tags
Important: The Oracle JDBC driver classes are supplied with
Oracle Application Server, but you must ensure that they are
compatible with your JDK and your database version. The
classes12.zip or classes12.jar library is for JDK 1.2.x or
higher. Also, the driver release number must be compatible with
your database release number.
5-14 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

EJB Primer 6-1

6
EJB Primer

After you have installed OC4J and configured the base server and default Web site,
you can start developing J2EE applications. This chapter assumes that you have a
working familiarity with simple J2EE concepts and a basic understanding for EJB
development.

The following sections describe how to develop and deploy EJB applications with
OC4J:

■ Developing EJBs—Developing and testing an EJB module within the standard
J2EE specification.

■ Preparing the EJB Application for Assembly—Before deploying, you must
modify an XML file that acts as a standard J2EE application descriptor file for
the enterprise application.

■ Deploying the Enterprise Application to OC4J—Archive the enterprise Java
application into an Enterprise ARchive (EAR) file and deploy it to OC4J.

This chapter uses a stateless session bean example to show you each development
phase and deployment steps for an EJB. As an introduction to EJBs, a simple EJB
with a basic OC4J-specific configuration is used. You can download the stateless
session bean example from the OC4J sample code page at
http://otn.oracle.com/tech/java/oc4j/demos on the OTN Web site.

For more information on EJBs in OC4J, see Oracle Application Server Containers for
J2EE Enterprise JavaBeans Developer’s Guide.

Developing EJBs

6-2 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Developing EJBs
The development of EJB components for the OC4J environment is identical to
development in any other standard J2EE environment. The steps for developing
EJBs are as follows:

1. Creating the Development Directory—Create a development directory for the
enterprise application (as shown in Figure 6–1).

2. Implementing the Enterprise JavaBeans—Develop your EJB with its home
interface, remote interface, and bean implementation.

3. Accessing the EJB—Develop the client to access the bean through the remote or
local interface.

4. Creating the Deployment Descriptor—Create the standard J2EE EJB
deployment descriptor for all beans in your EJB application.

5. Archiving the EJB Application—Archive your EJB files into a JAR file.

Creating the Development Directory
You can develop your application in any manner. It is best to use consistent naming
for locating your application easily. One method would be to implement your
enterprise Java application under a single parent directory structure, separating
each module of the application into their own sub-directories.

The hello example was developed using the directory structure described in
"Creating the Development Directory" on page 1-9. Notice in Figure 6–1 that the EJB
and Web modules exist under the hello application parent directory and are
developed separately in their own directory.

Developing EJBs

EJB Primer 6-3

Figure 6–1 Hello Directory Structure

Implementing the Enterprise JavaBeans
When you implement an EJB, create the following:

Note: For EJB modules, the top of the module (ejb_module)
represents the start of a search path for classes. As a result, classes
belonging to packages are expected to be located in a nested
directory structure beneath this point. For example, a reference to a
package class ’myapp.Hello.class’ is expected to be located in
"...hello/ejb_module/myapp/Hello.class".

Note: Message-driven beans have similar, but not the same,
requirements as listed below. See the Oracle Application Server
Containers for J2EE Enterprise JavaBeans Developer’s Guide for more
information.

.../hello/

META-INF/

<ejb_module>
EJB classes (Hello.class, ...)
META-INF/

ejb-jar.xml

<web_module>/
HTML files
JSP pages
WEB-INF/

web.xml

classes/
Servlet classes

lib/
dependent libraries

/

 (HelloServlet.class)

orion-application.xml
application.xml

orion-ejb-jar.xml

orion-web.xml

Developing EJBs

6-4 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

1. The home interfaces for the bean. The home interface defines the create
method for your bean. If the bean is an entity bean, it also defines the finder
method(s) for that bean.

a. The remote home interface extends javax.ejb.EJBHome.

b. The local home interface extends javax.ejb.EJBLocalHome.

2. The component interfaces for the bean.

a. The remote interface declares the methods that a client can invoke remotely.
It extends javax.ejb.EJBObject.

b. The local interface declares the methods that a collocated bean can invoke
locally. It extends javax.ejb.EJBLocalObject.

3. The bean implementation includes the following:

a. The implementation of the business methods that are declared in the
component interfaces.

b. The container callback methods that are inherited from either the
javax.ejb.SessionBean or javax.ejb.EntityBean interfaces.

c. The ejb* methods that match the home interface create methods:

* For stateless session beans, provide an ejbCreate method with no
parameters.

* For stateful session beans, provide an ejbCreate method with
parameters matching those of the create method as defined in the home
interfaces.

* For entity beans, provide ejbCreate and ejbPostCreate methods
with parameters matching those of the create method as defined in
the home interfaces.

Creating the Home Interfaces
The home interfaces (remote and local) are used to create the bean instance; thus,
they define the create method for your bean. Each type of EJB can define the
create method in the following ways:

EJB Type Create Parameters

Stateless Session Bean Can have only a single create method, with no parameters.

Developing EJBs

EJB Primer 6-5

For each create method, a corresponding ejbCreate method is defined in the
bean implementation.

Remote Invocation Any remote client invokes the EJB through its remote interface.
The client invokes the create method that is declared within the remote home
interface. The container passes the client call to the ejbCreate method—with the
appropriate parameter signature—within the bean implementation. You can use the
parameter arguments to initialize the state of the new EJB object.

1. The remote home interface must extend the javax.ejb.EJBHome interface.

2. All create methods must throw the following exceptions:

■ javax.ejb.CreateException

■ javax.ejb.EJBException or another RuntimeException

Example 6–1 Remote Home Interface for Session Bean

The following code sample illustrates a remote home interface for a session bean
called HelloHome.

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface HelloHome extends EJBHome
{
 public Hello create() throws CreateException, RemoteException;
}

Local Invocation An EJB can be called locally from a client that exists in the same
container. Thus, a collocated bean, JSP, or servlet invokes the create method that is
declared within the local home interface. The container passes the client call to the
ejbCreate method—with the appropriate parameter signature—within the bean

Stateful Session Bean One or more create methods, each with its own defined
parameters.

Entity Bean Zero or more create methods, each with its own defined
parameters. All entity beans must define one or more finder
methods, where at least one is a findByPrimaryKey method.

EJB Type Create Parameters

Developing EJBs

6-6 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

implementation. You can use the parameter arguments to initialize the state of the
new EJB object.

1. The local home interface must extend the javax.ejb.EJBLocalHome
interface.

2. All create methods may throw the following exceptions:

■ javax.ejb.CreateException

■ javax.ejb.EJBException or another RuntimeException

Example 6–2 Local Home Interface for Session Bean

The following code sample shows a local home interface for a stateless session bean
called HelloLocalHome.

package hello;

import javax.ejb.*;

public interface HelloLocalHome extends EJBLocalHome
{
 public HelloLocal create() throws CreateException, EJBException;
}

Creating the Component Interfaces
The component interfaces define the business methods of the bean that a client can
invoke.

Creating the Remote Interface The remote interface defines the business methods that a
remote client can invoke. Here are the requirements for developing the remote
interface:

1. The remote interface of the bean must extend the javax.ejb.EJBObject
interface, and its methods must throw the java.rmi.RemoteException
exception.

2. You must declare the remote interface and its methods as public for remote
clients.

3. The remote interface, all its method parameters, and return types must be
serializable. In general, any object that is passed between the client and the EJB
must be serializable, because RMI marshals and unmarshals the object on both
ends.

Developing EJBs

EJB Primer 6-7

4. Any exception can be thrown to the client, as long as it is serializable. Runtime
exceptions, including EJBException and RemoteException, are transferred
back to the client as remote runtime exceptions.

Example 6–3 Remote Interface Example for Hello Session Bean

The following code sample shows a remote interface called Hello with its defined
methods, each of which will be implemented in the stateless session bean.

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface Hello extends EJBObject
{
 public String sayHello(String myName) throws RemoteException;
}

Creating the Local Interface The local interface defines the business methods of the
bean that a local (collocated) client can invoke.

1. The local interface of the bean must extend the javax.ejb.EJBLocalObject
interface.

2. You declare the local interface and its methods as public.

Example 6–4 Local Interface for Hello Session Bean

The following code sample contains a local interface called HelloLocal with its
defined methods, each of which will be implemented in the stateless session bean.

package hello;

import javax.ejb.*;

public interface HelloLocal extends EJBLocalObject
{
 public String sayHello(String myName) throws EJBException;
}

Developing EJBs

6-8 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Implementing the Bean
The bean contains the business logic for your application. It implements the
following methods:

1. The signature for each of these methods must match the signature in the remote
or local interface, except that the bean does not throw the RemoteException.
Since both the local and the remote interfaces use the bean implementation, the
bean implementation cannot throw the RemoteException.

2. The lifecycle methods are inherited from the SessionBean or EntityBean
interface. These include the ejb<Action> methods, such as ejbActivate,
ejbPassivate, and so on.

3. The ejbCreate methods that correspond to the create method(s) that are
declared in the home interfaces. The container invokes the appropriate
ejbCreate method when the client invokes the corresponding create
method.

4. Any methods that are private to the bean or package used for facilitating the
business logic. This includes private methods that your public methods use for
completing the tasks requested of them.

Example 6–5 Hello Session Bean Implementation

The following code shows the bean implementation for the hello example.

package hello;

import javax.ejb.*;

public class HelloBean implements SessionBean
{
 public SessionContext ctx;

 public HelloBean()
 { // constructor
 }

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.

Developing EJBs

EJB Primer 6-9

 public void ejbCreate() throws CreateException
 { // when bean is created
 }

 public void ejbActivate()
 { // when bean is activated
 }

 public void ejbPassivate()
 { // when bean is deactivated
 }

 public void ejbRemove()
 { // when bean is removed
 }

 public void setSessionContext(SessionContext ctx)
 { this.ctx = ctx;
 }

 public void unsetSessionContext()
 { this.ctx = null;
 }

 public String sayHello(String myName) throws EJBException
 {
 return ("Hello " + myName);
 }
}

Accessing the EJB
All EJB clients perform the following steps to instantiate a bean, invoke its methods,
and destroy the bean:

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.

Developing EJBs

6-10 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

1. Look up the home interface through a JNDI lookup. Follow JNDI conventions
for retrieving the bean reference, including setting up JNDI properties if the
bean is remote to the client.

2. Narrow the returned object from the JNDI lookup to the home interface, as
follows:

a. When accessing the remote interface, use the
PortableRemoteObject.narrow method to narrow the returned object.

b. When accessing the local interface, cast the returned object with the local
home interface type.

3. Create instances of the bean in the server through the returned object. Invoking
the create method on the home interface causes a new bean to be instantiated
and returns a bean reference.

4. Invoke business methods, which are defined in the component (remote or local)
interface.

5. After you are finished, invoke the remove method. This will either remove the
bean instance or return it to a pool. The container controls how to act on the
remove method.

Example 6–6 A Servlet Acting as a Local Client

The following example is executed from a servlet that is collocated with the Hello
bean. Thus, the session bean uses the local interface, and the JNDI lookup does not
require JNDI properties.

Note: For entity beans that are already instantiated, you can
retrieve the bean reference through one of its finder methods.

Important: In order to access EJBs, the client-side must download
oc4j_client.zip file from http://otn.oracle.com/
software/products/ias/devuse.html. Unzip the JAR into a
directory that is in your CLASSPATH. This JAR contains the classes
necessary for client interaction. If you download this JAR into a
browser, you must grant certain permissions. See the "Granting
Permissions" section of the Security chapter in the Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide for a
list of these permissions.

Developing EJBs

EJB Primer 6-11

package hello;

import javax.servlet.http.*;
import javax.servlet.*;
import javax.ejb.*;
import javax.naming.*;
import java.io.IOException;

public class HelloServlet extends HttpServlet
{
 HelloLocalHome helloHome;
 HelloLocal hello;

 public void init() throws ServletException
 {
 try {
 // 1. Retreive the Home Interface using a JNDI Lookup
 // Retrieve the initial context for JNDI.
 // No properties needed when local
 Context context = new InitialContext();

 // Retrieve the home interface using a JNDI lookup using
 // the java:comp/env bean environment variable
 // specified in web.xml
 helloHome = (HelloLocalHome)
 context.lookup("java:comp/env/ejb/HelloBean");

 //2. Narrow the returned object to be an HelloHome object.
 // Since the client is local, cast it to the correct object type.
 //3. Create the local Hello bean instance, return the reference

Note: The JNDI name is specified in the <ejb-local-ref>
element in the session bean EJB deployment descriptor as follows:

 <ejb-local-ref>
 <ejb-ref-name>ejb/HelloBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>hello.HelloLocalHome</local-home>
 <local>hello.HelloLocal</local>
</ejb-local-ref>

Developing EJBs

6-12 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

 hello = (HelloLocal)helloHome.create();

 } catch(NamingException e) {
 throw new ServletException("Error looking up home", e);
 } catch(CreateException e) {
 throw new ServletException("Error creating local hello bean", e);
 }
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 try
 {
 out.println("<html>");
 out.println("<body>");
 //4. Invoke a business method on the local interface reference.
 out.println(hello.sayHello("James Earl"));
 out.println("</body>");
 out.println("</html>");
 } catch(EJBException e) {
 out.println("EJBException error: " + e.getMessage());
 } catch(IOException e) {
 out.println("IOException error: " + e.getMessage());
 } finally {
 out.close();
 }
 }
}

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.

Developing EJBs

EJB Primer 6-13

Example 6–7 A Java Client as a Remote Client

The following example is executed from a pure Java client that is a remote client.
Any remote client must set up JNDI properties before retrieving the object, using a
JNDI lookup.

The jndi.properties file for this client is as follows:

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://myhost/helloworld
java.naming.security.principal=admin
java.naming.security.credentials=welcome

The pure Java client that invokes Hello remotely is as follows:

package hello;

import javax.ejb.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import java.io.*;
import java.util.*;
import java.rmi.RemoteException;

/*
 * A simple client for accessing an EJB.
 */

public class HelloClient
{
 public static void main(String[] args)

Note: The JNDI name is specified in the <ejb-ref> element in
the client’s application-client.xml file—as follows:

 <ejb-ref>
 <ejb-ref-name>ejb/HelloBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>hello.HelloHome</home>
 <remote>hello.Hello</remote>
 </ejb-ref>

Developing EJBs

6-14 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

 {
 System.out.println("client started...");
 try {
 // Initial context properties are set in the jndi.properties file
 //1. Retrieve remote interface using a JNDI lookup*/
 Context context = new InitialContext();

 // Lookup the HelloHome object. The reference is retrieved from the
 // application-local context (java:comp/env). The variable is
 // specified in the application-client.xml).
 Object homeObject = context.lookup("java:comp/env/Helloworld");

 //2. Narrow the reference to HelloHome. Since this is a remote
 // object, use the PortableRemoteObject.narrow method.
 HelloHome home = (HelloHome) PortableRemoteObject.narrow
 (homeObject, HelloHome.class);

 //3. Create the remote object and narrow the reference to Hello.
 Hello remote =
 (Hello) PortableRemoteObject.narrow(home.create(), Hello.class);

 //4. Invoke a business method on the remote interface reference.
 System.out.println(remote.sayHello("James Earl"));

 } catch(NamingException e) {
 System.err.println("NamingException: " + e.getMessage());
 } catch(RemoteException e) {
 System.err.println("RemoteException: " + e.getMessage());
 } catch(CreateException e) {
 System.err.println("FinderException: " + e.getMessage());
 }
 }
}

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.

Developing EJBs

EJB Primer 6-15

Setting JNDI Properties
If the client is collocated with the target, the client exists within the same application
as the target, or the target exists within its parent, then you do not need a JNDI
properties file. Else, you must initialize your JNDI properties either within a
jndi.properties file, in the system properties, or within your implementation,
before the JNDI call. The following sections discuss these three options:

■ No JNDI Properties

■ JNDI Properties File

■ JNDI Properties Within the Implementation

To specify credentials within the JNDI properties, see the Oracle Application Server
Containers for J2EE Security Guide.

No JNDI Properties A servlet that is collocated with the target bean automatically
accesses the JNDI properties for the node. Thus, accessing the EJB is simple: no
JNDI properties are required.

//Get the Initial Context for the JNDI lookup for a local EJB
InitialContext ic = new InitialContext();
//Retrieve the Home interface using JNDI lookup
Object helloObject = ic.lookup("java:comp/env/ejb/HelloBean");

This is also true if the target bean is in the same application or an application that
has been deployed as this application’s parent. Use the -parent option of the
admin.jar tool to set the parent of the application.

JNDI Properties File If setting the JNDI properties within the jndi.properties file,
set the properties as follows. Make sure that this file is accessible from the
CLASSPATH.

Factory
See "Using the Initial Context Factory Classes" on page 6-16 for discussion on the
initial context factory to use.

java.naming.factory.initial=
com.evermind.server.ApplicationClientInitialContextFactory

Note: A full description of how to use JNDI, see the JNDI chapter
in the Oracle Application Server Containers for J2EE Services Guide.

Developing EJBs

6-16 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Location
Use the ORMI protocol for accessing EJBs in a standalone OC4J. The ORMI default port
number is 23791, which can be modified in config/rmi.xml. Thus, set the provider
URL in the jndi.properties, in one of the two ways:

java.naming.provider.url=ormi://<hostname>/<application-name>
or

java.naming.provider.url=ormi://<hostname>:23791/<application-name>\

 When you access EJBs in a remote container, you must pass valid credentials to this
container. Stand-alone clients define their credentials in the jndi.properties file
deployed with the client's code.

java.naming.security.principal=<username>
java.naming.security.credentials=<password>

JNDI Properties Within the Implementation If you set the properties within the bean
implementation, then set them with the same values, just with different syntax. For example,
JavaBeans running within the container pass their credentials within the
InitialContext, which is created to look up the remote EJBs.

To pass JNDI properties within the Hashtable environment, set these as shown below:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",
 "com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
Object homeObject = ic.lookup("java:comp/env/ejb/HelloBean");

// Narrow the reference to a HelloHome.
HelloHome helloHome =
 (HelloHome) PortableRemoteObject.narrow(homeObject,
 HelloHome.class);

Using the Initial Context Factory Classes
The type of initial context factory that you use depends on who the client is. The
initial context factory creates the initial context class for the client.

Developing EJBs

EJB Primer 6-17

■ If the client is a pure Java client outside of the OC4J container, use the
ApplicationClientInitialContextFactory class.

■ If the client is an EJB or servlet client within the OC4J container, use the
ApplicationInitialContextFactory class. The
ApplicationInitialContextFactory class is the default class; thus, each
time you create a new InitialContext without specifying any initial context
factory class, your client uses the ApplicationInitialContextFactory
class.

■ If the client is an administrative class that is going to manipulate or traverse the
JNDI tree, use the com.evermind.server.RMIInitialContextFactory
class.

■ If the client is going to use DNS load balancing, use the
RMIInitialContextFactory class.

For example, if you have a pure Java client, then you set the initial context factory
class ("java.naming.factory.initial") to
ApplicationClientInitialContextFactory. The following example sets the
initial context factory in the environment, but you could also put this in the JNDI
properties file.

env.put("java.naming.factory.initial",
"com.evermind.server.ApplicationClientInitialContextFactory");

If the client is an EJB or a servlet calling an EJB in the same application, you can use
the default by not setting the JNDI properties with a initial context factory and uses
the ApplicationInitialContextFactory object by executing the following:

InitialContext ic = new InitialContext();

If you decide to use the RMIInitialContextFactory class, you must use the
JNDI name in the lookup and not a logical name defined in the <ejb-ref> in your
XML configuration file.

An Initial Context Factory Specific to DNS Load Balancing To use DNS as a method for
your incoming load balancing, you must do the following:

1. Within DNS, map a single host name to several IP addresses. Each of the port
numbers must be the same for each IP address. Set up the DNS server to return
the addresses either in a round-robin or random fashion.

2. Within each client, use any initial context factory to create an initial context. You
use the ormi:// prefix in the provider URL.

Developing EJBs

6-18 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

3. Set the dedicated.rmicontext property to true.

Each time the lookup occurs on the DNS server, the DNS server hands back a one of
the many IP addresses that are mapped to it.

Example 6–8 RMIInitialContextFactory Example

java.naming.factory.initial=
 com.evermind.server.rmi.RMIInitialContextFactory
java.naming.provider.url=ormi://myserver/applname
java.naming.security.principal=admin
java.naming.security.credentials=welcome
dedicated.rmicontext=true

Creating the Deployment Descriptor
After implementing and compiling your classes, you must create the standard J2EE
EJB deployment descriptor for all beans in the module. The XML deployment
descriptor (defined in the ejb-jar.xml file) describes the EJB module of the
application. It describes the types of beans, their names, and attributes. The
structure for this file is mandated in the DTD file, which is provided at "
http://java.sun.com/dtd/ejb-jar_2_0.dtd".

Any EJB container services that you want to configure is also designated in the
deployment descriptor. For information about data sources and JTA, see the Oracle
Application Server Containers for J2EE Services Guide. For information about security,
see the Oracle Application Server Containers for J2EE Security Guide.

After creation, place the deployment descriptors for the EJB application in the
META-INF directory that is located in the same directory as the EJB classes. See
Figure 6–1 for more information.

The following example shows the sections that are necessary for the Hello
example, which implements both a remote and a local interface.

Example 6–9 XML Deployment Descriptor for Hello Bean

The following is the deployment descriptor for a version of the Hello example that
uses a stateless session bean. This example defines both the local and remote
interfaces. You do not have to define both interface types; you may define only one
of them.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

Developing EJBs

EJB Primer 6-19

<ejb-jar>
 <display-name>hello</display-name>
 <description>
 An EJB app containing only one Stateless Session Bean
 </description>
 <enterprise-beans>
 <session>
 <description>no description</description>
 <display-name>HelloBean</display-name>
 <ejb-name>HelloBean</ejb-name>
 <home>hello.HelloHome</home>
 <remote>hello.Hello</remote>
 <local-home>hello.HelloLocalHome</local-home>
 <local>hello.HelloLocal</local>
 <ejb-class>hello.HelloBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>HelloBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 <security-role>
 <role-name>users</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.

Preparing the EJB Application for Assembly

6-20 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Archiving the EJB Application
Once you have finalized your implementation and have created the deployment
descriptors, archive your EJB application into a JAR file. The JAR file should include
all EJB application files and the deployment descriptor.

For example, to archive your compiled EJB class files and XML files for the Hello
example into a JAR file, perform the following in the ../hello/ejb_module
directory:

% jar cvf helloworld-ejb.jar .

This archives all files contained within the ejb_module subdirectory within the
JAR file.

Preparing the EJB Application for Assembly
Before deploying, perform the following:

1. Modify the application.xml file with the modules of the enterprise Java
application.

2. Archive all elements of the application into an EAR file.

These steps are described in the following sections:

■ Modifying Application.xml

■ Creating the EAR File

Modifying Application.xml
The application.xml file acts as the standard J2EE application descriptor file for
the application and contains a list of the modules that are included within your
enterprise application. You use each <module> element in the application.xml
file to designate what comprises your enterprise application. Each module describes

Note: If you have included a Web application as part of this
enterprise Java application, follow the instructions for building the
Web application in "Building and Deploying Within a Directory" on
page 2-12. Then, modify the *-web-site.xml file, and archive all
Web application files into a WAR file.

Preparing the EJB Application for Assembly

EJB Primer 6-21

one of three things: EJB JAR, Web WAR, and any client files. Respectively, modify
the <ejb>, the <web>, and the <java> elements in separate <module> elements.

■ The <ejb> element specifies the EJB JAR filename.

■ The <web> element specifies the Web WAR filename in the <web-uri> element
and its context in the <context> element.

■ The <java> element specifies the client JAR filename, if any.

As indicated in Figure 6–2, the application.xml file is located under a
META-INF directory under the parent directory for the application. The JAR, WAR,
and client JAR files should be contained within this directory. Because of this
proximity, the application.xml file only refers to the JAR and WAR files by
name and relative path—and not by full directory path. If these files were located in
subdirectories under the parent directory, then these subdirectories must be
specified in addition to the filename.

Figure 6–2 Archive Directory Format

For example, the following example modifies the <ejb> and <web> module
elements within application.xml for the Hello EJB application that also contains
a servlet that interacts with the EJB.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.2//EN" "http://java.sun.com/j2ee/dtds/application_1_
2.dtd">
<application>
 <display-name>helloworld j2ee application</display-name>
 <description>
 A sample J2EE application that uses a Helloworld Session Bean
 on the server and calls from java/servlet/JSP clients.
 </description>
 <module>
 <ejb>helloworld-ejb.jar</ejb>

hello/

META-INF/
application.xml

helloworld-ejb.jar

helloworld-web.war

Deploying the Enterprise Application to OC4J

6-22 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

 </module>
 <module>
 <web>
 <web-uri>helloworld-web.war</web-uri>
 <context-root>/helloworld</context-root>
 </web>
 </module>
 <module>
 <java>helloworld-client.jar</java>
 </module>
</application>

Creating the EAR File
Create the EAR file that contains the JAR, WAR, and XML files for the application.
Note that the application.xml file serves as the EAR application descriptor file.

To create the helloworld.ear file, execute the following in the hello directory that
is shown in Figure 6–2:

% jar cvfM helloworld.ear .

This archives the application.xml, the helloworld-ejb.jar, and the
helloworld-web.war files into the helloworld.ear file.

Deploying the Enterprise Application to OC4J
OC4J is aware of and deploys your application when it is configured within the
server.xml file. There are two methods to provide application information within
the server.xml file with a standalone OC4J instance:

■ using admin.jar to modify the server.xml file

■ updating the server.xml file manually

Although both methods accomplish the same result, using the admin.jar tool
eliminates possible errors in manual updates.

Using ADMIN.JAR to Modify SERVER.XML
OC4J contains a command-line deployment tool for deploying J2EE
applications—the admin.jar command. The options for this command are listed
in the "Options for the OC4J Administration Management JAR" on page A-34.

Deploying the Enterprise Application to OC4J

EJB Primer 6-23

To deploy a J2EE application with the EAR file to a remote node, execute
admin.jar, as follows:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port
username password -deploy -file path/filename
-deploymentName app_name -targetPath path/destination

where

■ The oc4j_host:oc4j_ormi_port is the host and port of the OC4J server.

■ The username password is the administration username and password for
the OC4J server.

■ The -file path/filename indicates the local directory and filename for the
EAR file.

■ The -deploymentName app_name variable is the name of the application.

■ The -targetPath path/destination indicates what path on the server
node to deploy the EAR file into. The default path is the applications/
directory. Oracle recommends that you provide a target path.

Updating SERVER.XML Manually
In server.xml, add a new or modify the existing <application name=...
path=... auto-start="true" /> entry for each J2EE application. The path
should be the full directory path and EAR filename. For our hello example, add
the following to the server.xml file:

<application name="hello"
path="/private/applications/helloworld.ear"
auto-start="true" />

If you included a Web application portion, you must do the following to bind the
Web application to the Web server. In *-web-site.xml, add a <web-app ...>
entry for each Web application. The application attribute should be the same
value as provided in the server.xml file. The name attribute should be the WAR
file, without the WAR extension, for the Web application.

For Web application binding for the hello Web application, add the following:

<web-app application="hello" name="helloworld-web"

Note: If you have a Web application within the EAR file, bind the
Web application using the admin.jar -bindWebApp option.

Deploying the Enterprise Application to OC4J

6-24 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

root="/hello" />

Verifying Deployment
OC4J detects the addition of your application to server.xml. The OC4J server
displays a message that your application has been deployed. This is the extent of
installation in OC4J. If the server does not notice your application in a timely
manner, simply start (or restart) OC4J, and it will locate your application
immediately.

Security 7-1

7
Security

OC4J security employs a user manager to authenticate and authorize users and
groups that attempt to access a J2EE application. User managers differ in
performance and are employed based on the security you require. Confidentiality
through encryption is supplied with SSL.

This chapter describes the following topics:

■ Overview of Security Functions

■ Authentication

■ Authorization

■ Plugging In a User Manager

■ Confidentiality Through SSL

For a broader description of Oracle Application Server security, see the Oracle
Application Server 10g Security Guide and the Oracle Application Server Containers for
J2EE Security Guide.

Overview of Security Functions

7-2 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Overview of Security Functions
OC4J security is based on a two-step process. First, a user or group attempting to
access a J2EE application is authenticated, and then it is authorized. Authentication
and authorization are provided under various user managers, such as the
JAZNUserManager and XMLUserManager classes. The JAZNUserManager class
is the default and offers the best security. The XMLUserManager is the simplest
method for security. The JAZNUserManager leverages the OracleAS JAAS
Provider as the security infrastructure for OC4J by using either the Lightweight
Directory Access Protocol (LDAP)-based or the XML-based provider type. The
XMLUserManager is configured using a file, so the passwords are visible.

See "Plugging In a User Manager" on page 7-11 for details on the OracleAS JAAS
Provider, other provider types, and user managers. Also, see the Oracle Application
Server Containers for J2EE Security Guide for details on security providers.

Authentication and authorization, along with OC4J confidentiality, are introduced
below:

■ Authentication: Verifies the identity and credentials of a user.

Defines users and groups in a user repository. A user repository is employed by a
user manager to verify the identity of a user or group attempting to access a J2EE
application. A user repository can be a file or a directory server, depending on
your environment. The OracleAS JAAS Provider-LDAP user manager and the
XMLUserManager are two examples of user repositories.

Although the J2EE application determines which client can access the
application, it is the user manager, employing the user name and password,
that verifies the client’s identity, based on information in the user repository.

■ Authorization: Permits or denies users and groups access to an application.

Specifies authorization for users and groups (identities) in the J2EE and
OC4J-specific deployment descriptors. J2EE and OC4J-specific deployment
descriptors indicate what roles are needed to access the different parts of the
application. Roles are the logical identities that each application uses to indicate
access rights to its different objects. The OC4J-specific deployment descriptors
provide a mapping between the logical roles and the users and groups known
by OC4J.

Note: The default user manager was changed from the
XMLUserManager to the JAZNUserManager.

Authentication

Security 7-3

■ Confidentiality Through SSL: Ensures encrypted communications.

Use Secure Sockets Layer (SSL) over HTTP for encrypted communication.

Authentication
Authentication verifies that the identity and credentials of a user are valid. The J2EE
application determines which user can use the application. However, it is the user
manager, employing the user name and password, that verifies the user’s identity
based on information in the user repository. Authentication is distinct from
authorization, which is the process of giving a user access to a J2EE application,
based on his identity.

OC4J security authenticates two types of clients: HTTP and Enterprise JavaBeans
(EJBs). This section describes each of these along with setting up users and groups.

Specifying Users and Groups
OC4J supports the definition of users and groups—either shared by all deployed
applications or specific to a given application.

■ Shared users and groups are listed in the user repository, whose location is
specified in the global config/application.xml file.

■ Application-specific users and groups are listed in the application-specific user
repository, whose location is specified in the orion-application.xml file of
that application.

The way you define users and groups depends on what user manager you employ.
For example, because the OracleAS JAAS Provider provider uses roles instead of
groups, the JAZNUserManager XML-based user repository, jazn-data.xml, has
a different structure from the XMLUserManager user repository,
principals.xml. In addition, in a JAZNUserManager user repository,
passwords are encrypted, unlike in principals.xml.

The following sections offer examples of how to specify users and groups under the
JAZNUserManager and XMLUserManager classes. See "Plugging In a User
Manager" on page 7-11 for additional details on these classes.

Example: Specifying Users and Groups in jazn-data.xml
The following XML from the JAZNUserManager user repository configuration file,
jazn-data.xml, shows how to define OracleAS JAAS Provider roles (groups) and
users. It defines a group named allusers and a user named guest.

Authentication

7-4 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

<role>
<name>allusers</name>
<members>
<member>
<type>user</type>
<name>guest</name>
</member>

</members>
</role>

Unlike the XML from the XMLUserManager user repository configuration file,
principals.xml, you can encrypt the password under the JAZNUserManager.

<user>
<name>guest</name>
<description>The default user</description>
<credentials>wEE6aA==</credentials>

</user>

Example: Specifying Users and Groups in principals.xml
The following XML from the principals.xml file (the user repository
configuration file for the XMLUserManager class) shows how to define a group
named allusers and a user named guest with password welcome. The guest
user is made a member of the allusers group.

If you want to use the XMLUserManager class instead of the JAZNUserManager
class, you must modify the global application.xml file, if modifying for all
applications, or the orion-application.xml file, if using the XMLUserManager
class only for a specific application. Add the following line:

<principals path="./principals.xml" />

where the path points to the location of the principals.xml file. Also, you must
remove or comment out the <jazn provider> element in this file.

Note: See the Oracle Application Server Containers for J2EE Security
Guide for more information on setting up the jazn-data.xml file.

Note: You can hide the password through password indirection.
See the Oracle Application Server Containers for J2EE Security Guide
for a description of password indirection.

Authentication

Security 7-5

<principals>
<groups>
<group name="allusers">
<description>Group for all normal users</description>
<permission name="rmi:login" />
<permission name="com.evermind.server.rmi.RMIPermission" />

</group>
....other groups...
</groups>
<users>
<user username="guest" password="welcome">
<description>Guest user</description>
<group-membership group="allusers" />

</user>
</users>

</principals>

Authenticating HTTP Clients
OC4J requests the client to authenticate itself when accessing protected URLs. You
can achieve authentication through a user name and password, or in the case of
SSL, through an SSL certificate. Although in most cases where authentication is
required, the user is prompted to enter a user name and password. If you decide to
use an SSL certificate to authenticate the client, see "Confidentiality Through SSL"
on page 7-19 for directions on how to set up your client certificate and server
keystore.

Authenticating EJB Clients
When you access EJBs in OC4J, you must pass valid credentials to this server.

■ Standalone clients define their credentials in the jndi.properties file, either
deployed with the EAR file or in the InitialContext object.

■ Servlets or JavaBeans running within OC4J pass their credentials within the
InitialContext object, which is created to look up the remote EJBs.

Setting JNDI Properties
If the client exists within the same application as the target, or the target exists
within its parent, you do not need a JNDI properties file. If not, you must initialize
your JNDI properties either within a jndi.properties file, in the system
properties, or within your implementation, before the JNDI call. The following
sections discuss these three options:

Authentication

7-6 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

■ No JNDI Properties

■ JNDI Properties File

■ JNDI Properties Within Implementation

No JNDI Properties A servlet that exists in the same application with the target bean
automatically accesses the JNDI properties for the node. Therefore, accessing the
EJB is simple, because no JNDI properties are required.

//Get the Initial Context for the JNDI lookup for a local EJB
InitialContext ic = new InitialContext();
//Retrieve the Home interface using JNDI lookup
Object empObject = ic.lookup("java:comp/env/employeeBean");

This is also true if the target bean is in an application that has been deployed as this
application’s parent. To specify parents, use the -parent option of the admin.jar
command when deploying the originating application.

JNDI Properties File If you are setting the JNDI properties within the
jndi.properties file, set the properties as follows. Ensure that this file is
accessible from the CLASSPATH.

Factory
java.naming.factory.initial=

com.evermind.server.ApplicationClientInitialContextFactory

Location
The ORMI default port number is 23791, which you can modify in
j2ee/home/config/rmi.xml. Therefore, set the URL in the jndi.properties,
in one of two ways:

java.naming.provider.url=ormi://hostname/application-name

- or -

java.naming.provider.url=ormi://hostname:23791/application-name

Security
When you access EJBs in OC4J, you must pass valid credentials to this server.
Standalone clients define their credentials in the jndi.properties file deployed
with the code of the client.

java.naming.security.principal=username

Authentication

Security 7-7

java.naming.security.credentials=password

JNDI Properties Within Implementation Set the properties with the same values, but with
different syntax. For example, JavaBeans running within the container pass their
credentials within the InitialContext, which is created to look up the remote
EJBs.

To pass JNDI properties within the Hashtable environment, set these as shown
below:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
Object homeObject = ic.lookup("java:comp/env/employeeBean");

// Narrow the reference to a TemplateHome.
EmployeeHome empHome =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject,
 EmployeeHome.class);

Using the Initial Context Factory Classes
For most clients, set the initial context factory class to
ApplicationClientInitialContextFactory. If you are not using a logical
name defined in the <ejb-ref> in your XML configuration file, then you must
provide the actual JNDI name of the target bean. In this case, you can use a different
initial context factory class, the
com.evermind.server.RMIInitialContextFactory class.

Example 7–1 Servlet Accessing EJB in Remote OC4J Instance

The following servlet uses the JNDI name for the target bean:
/cmpapp/employeeBean. Thus, this servlet must provide the JNDI properties in
an RMIInitialContext object, instead of the
ApplicationClientInitialContext object. The environment is initialized as
follows:

■ The INITIAL_CONTEXT_FACTORY is initialized to a
RMIInitialContextFactory.

■ Instead of creating a new InitialContext, it is retrieved.

Authorization

7-8 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

■ The actual JNDI name is used in the lookup.

Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "ormi://myhost/cmpapp");
env.put(Context.SECURITY_PRINCIPAL, "admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.evermind.server.rmi.RMIInitialContextFactory");

Context ic =
new com.evermind.server.rmi.RMIInitialContextFactory().

getInitialContext(env);

Object homeObject = ic.lookup("/cmpapp/employeeBean");

// Narrow the reference to a TemplateHome.
EmployeeHome empHome =

(EmployeeHome) PortableRemoteObject.narrow(homeObject,
EmployeeHome.class);

Authorization
Authorization is the process of granting or denying a user access to a J2EE
application based on its identity. Authorization is distinct from authentication,
which is the process of verifying that a user is valid.

Specify authorization for users and groups in the J2EE and OC4J-specific
deployment descriptors. The J2EE deployment descriptor is where you specify the
access rules for using logical roles. The OC4J-specific deployment descriptor is
where you map logical roles to actual users and groups, which are defined in a user
repository.

The following sections describe how to define users, groups, and roles:

■ Specifying Logical Roles in a J2EE Application

■ Mapping Logical Roles to Users and Groups

Specifying Logical Roles in a J2EE Application
Specify the logical roles that your application uses in the XML deployment
descriptors. Depending on the application component type, update one of the
following with the logical roles:

■ web.xml for the Web component

Authorization

Security 7-9

■ ejb-jar.xml for the EJB component

■ application.xml for the application

In each of these deployment descriptors, the roles are defined by an XML element
named <security-role>.

Example 7–2 EJB JAR Security Role Definition

The following steps describe the XML necessary to create a logical role named
VISITOR in the ejb-jar.xml deployment descriptor.

1. Define the logical security role, VISITOR, in the <security-role> element.

<security-role>
<description>A role for every user</description>
<role-name>VISITOR</role-name>

</security-role>

2. Define the bean and methods that this role can access in the
<method-permission> element.

<method-permission>
<description>VISITOR role needed for CustomerBean methods</description>
<role-name>VISITOR</role-name>
<method>
<ejb-name>customerbean</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

Mapping Logical Roles to Users and Groups
Map logical roles defined in the application deployment descriptors to actual users
and groups defined in a user repository. The mapping is specified in the
OC4J-specific deployment descriptor with a <security-role-mapping>
element. Figure 7–1 illustrates this mapping.

Authorization

7-10 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Figure 7–1 Mapping Logical Roles to Users and Groups Defined in jazn-data.xml

Example 7–3 Mapping Logical Role to Actual Role

This example maps the logical role VISITOR to the allusers group in the
orion-ejb-jar.xml file. Any user that can log in as part of this group is
considered to have the VISITOR role and can therefore execute the methods of
customerbean. This role is mapped to the allusers group, which is defined in
the User Manager configuration file—the jazn-data.xml file.

<security-role-mapping name="VISITOR">
<group name="allusers" />

</security-role-mapping>

Note: The security role mapping layer, either defined in the
principals.xml or jazn-data.xml file, is bypassed if the
following conditions are true:

■ The name of the security role and group (or roles, as in the case
of jazn-data.xml) are the same.

■ No security role mapping is specified.

application.xml
ejb_jar.xml
web.xml

<security_role>

<group>

<user> <user> <user>

<group>

<security_role_mapping> <security_role_mapping>

<security_role>

orion_application.xml
orion_ejb_jar.xml
orion_web.xml

jazn-data.xml
and principals.xml

O
_1

01
1

Plugging In a User Manager

Security 7-11

Plugging In a User Manager
Any user manager class providing OC4J security is an implementation of the
com.evermind.security.UserManager interface. This includes any custom
user managers you create. User manager classes manage users, groups, and
passwords with such methods as createUser(), getUser(), and getGroup().
Table 7–1 lists the user managers that you can employ in OC4J security.

By default, OC4J reads the user names, groups, and passwords from the
JAZNUserManager user repository, jazn-data.xml. In order for OC4J to employ
any user manager, you must specify the name of the user manager class in one of
the following XML files:

■ orion-application.xml—file for a single application

■ config/application.xml—global configuration file for all applications in
the server

The following sections describe how to configure each User Manager type:

■ Using the JAZNUserManager Class

■ Using the XMLUserManager Class

■ Creating Your Own User Manager

Note: You can map a logical role to a single group or to several
groups.

Table 7–1 User Managers and Their User Repositories Available to OC4J

User Manager User Repository

oracle.security.jazn.oc4j.JAZNUserManager ■ using the XML-based
provider type—
jazn-data.xml

■ using the LDAP-based
provider type—OID

com.evermind.server.XMLUserManager principals.xml

Custom user manager user-provided user repository

Plugging In a User Manager

7-12 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Using the JAZNUserManager Class
The primary purpose of the JAZNUserManager class is to leverage the OracleAS
JAAS Provider as the security infrastructure for OC4J. For a complete description of
the OracleAS JAAS Provider, see the Oracle Application Server Containers for J2EE
Security Guide.

By integrating the OracleAS JAAS Provider with OC4J, the following benefits can be
achieved:

■ Single Sign-on (SSO)/mod_osso integration

■ SSL/mod_ossl integration

■ OID integration (using the LDAP-based provider type)

■ Fine-grained access control using Java2 permissions

■ run-as identity support, delegation support (from servlet to EJB)

■ Secure file-based storage of passwords (using the XML-based provider type)

Use the JAZNUserManager class if you want OC4J security that has secure,
centralized storage, retrieval, and administration of OracleAS JAAS Provider data.
This data consists of realm (user and roles) and policy (permissions) information.
Figure 7–2 illustrates the architecture of OC4J security under the
JAZNUserManager class.

The JAZNUserManager class can use two types of OracleAS JAAS Providers for
OC4J security. Use the provider type that is appropriate for your environment:

■ LDAP-based

For centralized storage of information in a directory. The user repository is OID.

■ XML-based

For lightweight storage of information in an XML file. The user repository is the
jazn-data.xml file.

Plugging In a User Manager

Security 7-13

Figure 7–2 OC4J Security Architecture Under the JAZNUserManager Class

In OC4J, you can configure your application(s) to use the JAZNUserManager class
by adding the <jazn> or <user-manager> element in your OC4J-specific
configuration file (config/application.xml or orion-application.xml).

Using the JAZNUserManager Class with the LDAP-Based Provider Type
The LDAP-based provider type delegates user and group management
functionality to the Delegated Administrative Service (DAS) from OID.

The following examples from an OC4J-specific configuration file have OC4J employ
the JAZNUserManager class as the user manager with the LDAP-based provider
type.

<jazn provider="LDAP" default-realm="sample_subrealm"
location="ldap://myoid:389" />

- or -

<user-manager class="oracle.security.jazn.oc4j.JAZNUserManager">

JAAS provider

Oracle Internet
Directory

user repository

jazn-data.xml
user repository

XML-based
provider type

LDAP-based
provider type

OC4J

Oracle HTTP Server

JAZNUserManager

O
_1

01
3

Plugging In a User Manager

7-14 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

<property name="provider.type" value="LDAP" />
<property name="realm.default" value="sample_subrealm" />
<property name="ldap.service" value="ldap://myoid:389" />

</user-manager>

Using the JAZNUserManager Class with the XML-Based Provider Type
The XML-based provider type is a fast, lightweight implementation of the OracleAS
JAAS Provider API. This provider type uses XML to store user names and
encrypted passwords.

The following examples from an OC4J-specific configuration file have OC4J employ
the JAZNUserManager class as the user manager with the XML-based provider
type. The user repository is located at
.../j2ee/home/jazn/config/jazn-data.xml. Because there is only one
realm in the data file, the specification of realm.default is not needed.

<jazn provider="XML"
location=".../j2ee/home/config/jazn-data.xml" />

- or -

<user-manager class="oracle.security.jazn.oc4j.JAZNUserManager">
<property name="provider.type" value="XML" />
<property name="xml.store.fs.jazn"

value=".../j2ee/home/config/jazn-data.xml" />
</user-manager>

Using the XMLUserManager Class
The XMLUserManager is a file-based security model, where all of your users, roles,
groups, and passwords are stored in principals.xml. This is not secure as your
passwords could be in the clear.

However, if you want to use the XMLUserManager class instead of the
JAZNUserManager class, you must modify the global application.xml file, if

Notes: If you specify both the <user-manager> element and the
<jazn> element, then the <jazn> element is ignored.

Notes: If you specify both the <user-manager> element and the
<jazn> element, then the <jazn> element is ignored.

Plugging In a User Manager

Security 7-15

modifying for all applications, or the orion-application.xml file, if using the
XMLUserManager class only for a specific application. Add the following line:

<principals path="./principals.xml" />

where the path points to the location of the principals.xml file. Also, you must
remove or comment out the <jazn> element in this file. If you do not remove or
comment out the <jazn> element, then whichever element is specified first is the
User Manager for the applications. For example, if you have the following:

<principals path="./principals.xml" />
<jazn provider="XML"

location=".../j2ee/home/config/jazn-data.xml" />

In this case, the <principals> element appears first, so the XMLUserManager is
the security manager.

Creating Your Own User Manager
If none of the user managers supplied by OC4J are suitable for your specific user
authentication needs, then you can create your own user manager and configure
OC4J to use it.

To create your own user manager, complete the following steps:

1. Write a custom user manager.

Your custom user manager class must implement the
com.evermind.security.UserManager interface. Table 7–2 describes the
methods of this interface.

Plugging In a User Manager

7-16 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Table 7–2 Methods of the UserManager Interface

Method Description

void addDefaultGroup
 (java.lang.String name)

Adds a group to the set of default groups, of which all
users of the user manager are members.

■ java.lang.String name - the name of the group
being added to the default group

Group createGroup
 (java.lang.String name)

Creates a new group. If the group already exists, a
java.lang.InstantiationException is thrown.

■ java.lang.String name - the name of the new
group

User createUser
 (java.lang.String username,
 java.lang.String password)

Creates a new user.

■ java.lang.String username - the new user
name

■ java.lang.String password - the new user
password

User getAdminUser() Returns the default admin user or null if there is none.

User getAnonymousUser() Returns the default anonymous user or null if none
exists.

java.util.Set getDefaultGroups() Returns the set of default groups for the user manager.

Group getGroup(java.lang.String name) Returns the group with the specified name or null if
none exists.

■ java.lang.String name - the name of the
specified group

int getGroupCount() Returns the number of users contained in the user
manager. Throws UnsupportedOperationException
if not supported.

java.util.List getGroups
 (int start,int max)

Returns a list of groups (between the specified indexes)
contained in the user manager. Throws
UnsupportedOperationException if not supported.

UserManager getParent() Returns the parent manager of the user manager.

User getUser
 (java.lang.String username)

Returns the user with the specified user name or null if
there is no match.

User getUser
 (java.lang.String issuerDN,
 java.math.BigInteger serial)

Returns the user associated with this certificate or null if
either certificates are not supported or there is no user
associated with this certificate.

Plugging In a User Manager

Security 7-17

2. Plug the user manager into your application.

For a single application, specify the custom user manager in the
<user-manager> element of the orion-application.xml file. For all
applications in the server, specify the custom user manager in the
<user-manager> element of the config/application.xml file.

3. Define your users and groups.

See "Specifying Users and Groups" on page 7-3.

4. Create security constraints in your Web application.

See "Authorization" on page 7-8.

Example 7–4 Using the DataSourceUserManager Class

The following example of the DataSourceUserManager class is a custom user
manager and it implements the UserManager interface. Within its methods, the

User getUser
 (java.security.cert.X509Certificate
 certificate)

Returns the user associated with this certificate or null if
either certificates are not supported or there is no user
associated with this certificate.

int getUserCount() Returns the number of users contained in this manager.
Throws UnsupportedOperationException if not
supported.

java.util.List getUsers
 (int start,int max)

Returns a list of users (between the specified indexes)
contained in this manager. Throws
UnsupportedOperationException if not supported.

void init
 (java.util.Properties properties)

Instantiates the user manager with the specified settings.
Throws java.lang.InstantiationException if any
errors occur.

boolean remove(Group group) Removes the specified group from the user manager and
returns true if the operation is successful.

boolean remove(User user) Removes the specified user from the user manager and
returns true if the operation is successful.

void setParent
 (UserManager parent)

Sets the parent user manager if one exists. This method is
called only on a nested user manager.

A user manager can delegate work to its parent user
manager.

Table 7–2 Methods of the UserManager Interface (Cont.)

Method Description

Plugging In a User Manager

7-18 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

DataSourceUserManager class manages the users in a database specified by the
DataSource interface.

To configure a custom user manager, you specific the classname in the class
attribute of the <user-manager> element in either the global application.xml
file or the orion-application.xml file. Then, you can specify input parameters
and values through the name/value attributes of one or more <property>
elements.

For our DataSourceUserManager example, it requires that the table name and
columns are defined in the <property> element name/value pairs. This example
sets up the following input parameters:

■ Data source that specifies the database where the tables reside

■ Table for user names and passwords

■ Table for user and group association

A typical registration of the user manager for an application can be specified in
orion-application.xml, as follows:

<user-manager class="com.evermind.sql.DataSourceUserManager">
 <property name="dataSource" value="jdbc/OracleCoreDS" />
 <property name="table" value="j2ee_users" />
 <property name="usernameField" value="username" />
 <property name="passwordField" value="password" />
 <property name="groupMembershipTableName" value="second_table" />
 <property name="groupMembershipGroupFieldName" value="group" />
 <property name="groupMembershipUserNameFieldName" value="userId" />

</user-manager>

The <user-manager> property elements define the input parameters into the
UserManager class. It assumes that the tables that these refer to already exist in the
database.

The user manager is a hierarchical implementation with a parent-child relationship.
The parent of the DataSourceUserManager class is the default file-based
XMLUserManager class, which uses the principals.xml user repository.
However, you can change the parent with the setParent() method. The sample
DataSourceUserManager class invokes parent.getGroups() to retrieve all
the available groups from its parent, the XMLUserManager.

Confidentiality Through SSL

Security 7-19

Confidentiality Through SSL
OC4J supports Secure Socket Layer (SSL) communication between the client and a
standalone OC4J, using HTTPS.

The following sections document SSL in detail:

■ Overview of Using SSL for OC4J Standalone

■ Configuration of OC4J for SSL

■ HTTPS Common Problems and Solutions

Overview of Using SSL for OC4J Standalone
The following sections describe security features and discuss how to use them with
OC4J standalone:

■ Overview of SSL Keys and Certificates

■ Using Certificates with OC4J Standalone

Overview of SSL Keys and Certificates
In SSL communication between two entities, each entity (or at least the server) has
an associated public key and a private key. During communication, each entity uses its
own private key, together with the public key of the other party, to ensure that they
can communicate with each other. If one entity encrypts data using its private key,
then the other party can decrypt the data by only by using the public key of the
originating entity. If one entity encrypts data using the public key of the other party,
then that party can decrypt the data only by using its own private key.

Each key is a number, with the private key of an entity being kept secret by that
entity, and the public key of an entity being publicized to any other parties with
which secure communication might be necessary.

A certificate is a digitally signed statement from a recognized issuer that verifies the
public key of an entity. Such an issuer is referred to as a certificate authority (CA). An
issued certificate is typically associated with a root certificate. This association, or
"chaining", of certificates establishes a chain of trust. An issuer might have its own
root certificate, and will chain any certificates it issues to its own root certificate.

Functionally, a certificate acts as a container for keys, holding private keys (as
applicable), public keys, and associated signatures. A single certificate file can
contain an entire chain of certificates.

Confidentiality Through SSL

7-20 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

A keystore is used for storage of certificates, including the certificates of all trusted
parties. Through its keystore, an entity, such as OC4J, can authenticate itself to other
parties.

A keystore is a java.security.KeyStore instance that you can create and
manipulate using the keytool utility, provided with the Sun Microsystems JDK.
Go to the following site for information about keytool:

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

During secure communication between the client and OC4J, the following
functionality is executed:

■ The link (all communications) between the two is encrypted.

■ OC4J is authenticated to the client through a security challenge and response. A
"secret key" is securely exchanged and used for the encryption of the link.

■ Optionally, if OC4J is in client-authentication mode, the client is authenticated
to OC4J.

Using Certificates with OC4J Standalone
The steps for using keys and certificates for SSL communication in OC4J are as
follows. These are server-level steps, typically executed prior to deployment of an
application that will require secure communication, perhaps when you first set up
OC4J.

1. Use keytool to generate a private key, public key, and unsigned certificate.You
can place this information into either a new keystore or an existing keystore.

2. Obtain a signature for the certificate, using either of the following two
approaches.

■ You can generate your own signature by using keytool to "self-sign" the
certificate. This is appropriate if your only clients will trust you as, in effect,
your own certificate authority.

■ You can obtain a signature from a recognized certificate authority through
the following steps:

a. Using the certificate from Step 1, use keytool to generate a certificate
request, which is a request to have the certificate signed by a certificate
authority.

b. Submit the certificate request to a certificate authority.

Confidentiality Through SSL

Security 7-21

c. Receive the signature from the certificate authority and import it into
the keystore, again using keytool. In the keystore, the signature will be
matched with the associated certificate.

The process for requesting and receiving signatures is up to the particular certificate
authority you use. Because that is outside the scope and control of Oracle
Application Server, it is not covered in Oracle Application Server documentation.
You can go to the Web site of any certificate authority for information. Any browser
should have a list of trusted certificate authorities. Here are the Web addresses for
VeriSign and Thawte (acquired by VeriSign), for example:

http://www.verisign.com/

http://www.thawte.com/

In addition, Oracle provides a certificate authority, where each certificate is
recognized only by Oracle applications. The Oracle Certificate Authority (OCA)
allows customers to create and issue certificates for themselves and their users,
although these certificates would likely be unrecognized outside a customer’s
organization without prior arrangements. See the Oracle Application Server 10g Security
Guide for information about OCA.

Configuration of OC4J for SSL
For secure communication between a client and OC4J, configuration is required on
OC4J standalone. You are required to provide a certificate on the client-side only if
you configure client-authentication.

In the http-web-site.xml file of OC4J (or other Web site XML file, as
appropriate), you must specify appropriate SSL settings under the <web-site>
element.

1. Turn on the secure flag to specify secure communication, as follows:

<web-site ... protocol="http" secure="true" ... >
 ...
</web-site>

Setting secure="true" specifies that the HTTP protocol is to use an SSL
socket.

2. Use the <ssl-config> subelement and its keystore and
keystore-password attributes to specify the directory path and password for
the keystore, as follows:

Confidentiality Through SSL

7-22 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd" />
</web-site>

The <ssl-config> element is required whenever the secure flag is set to
"true".

The path_and_file value can indicate either an absolute or relative
directory path and includes the file name.

3. Optionally, turn on the needs-client-auth flag, an attribute of the
<ssl-config> element, to specify that client authentication is required, as
follows:

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd"
 needs-client-auth="true" />
</web-site>

This step sets up a mode where OC4J accepts or rejects a client entity for secure
communication, depending on its identity. The needs-client-auth attribute
instructs OC4J to request the client certificate chain upon connection. If the root
certificate of the client is recognized, then the client is accepted.

The keystore specified in the <ssl-config> element must contain the
certificates of any clients that are authorized to connect to OC4J through
HTTPS.

4. Optionally, specify each application in the Web site as shared. The shared
attribute of the <web-app> element indicates whether multiple bindings
(different Web sites, or ports, and context roots) can be shared. Supported
values are "true" and "false" (default).

Sharing implies the sharing of everything that makes up a Web application,
including sessions, servlet instances, and context values. A typical use for this
mode is to share a Web application between an HTTP site and an HTTPS site at
the same context path, when SSL is required for some but not all of the

Note: You can hide the password through password indirection.
See Oracle Application Server Containers for J2EE Security Guide for a
description of password indirection.

Confidentiality Through SSL

Security 7-23

communications. Performance is improved by encrypting only sensitive
information, rather than all information.

If an HTTPS Web application is marked as shared, then instead of using the SSL
certificate to track the session, the cookie is used to track the session. This is
beneficial in that the SSL certificiate uses 50K to store each certificate when
tracking it, which sometimes results in an "out of memory" problem for the
session before the session times out. This could possibly make the Web
application less secure, but might be necessary to work around issues such as
SSL session timeouts not being properly supported in some browsers.

5. Optionally, set the cookie domain if shared is true and the default ports are not
used. When the client interacts with a Web server over separate ports, the
cookie believes that each separate port denotes a separate Web site. If you use
the default ports of 80 for HTTP and 443 for HTTPS, the client recognizes these
as two different ports of the same Web site and creates only a single cookie.
However, if you use non-default ports, the client does not recognize these ports
as part of the same Web site and will create separate cookies for each port,
unless you specify the cookie domain.

Cookie domains track the client’s communication across multiple servers within
a DNS domain. If you use non-default ports for a shared environment with
HTTP and HTTPS, set the cookie-domain attribute in the
<session-tracking> element in the orion-web.xml file for the
application. The cookie-domain attribute contains the DNS domain with at least
two components of the domain name provided.

<session-tracking cookie-domain=".oracle.com" />

Example 7–5 HTTPS Communication With Client Authentication

The following configures a Web site for HTTPS secure communication with client
authentication:

<web-site display-name="OC4J Web Site" protocol="http" secure="true" >
 <default-web-app application="default" name="defaultWebApp" />
 <access-log path="../log/default-web-access.log" />
 <ssl-config keystore="../keystore" keystore-password="welcome"
 needs-client-auth="true" />
</web-site>

Only the portions in bold are specific to security. The protocol value is always
"http" for HTTP communication, whether or not you use secure communication.
A protocol value of http with secure="false" indicates HTTP protocol; http
with secure="true" indicates HTTPS protocol.

Confidentiality Through SSL

7-24 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Then, configures the news application to accept both HTTP and HTTPS
connections:

<web-app application="news" name="news-web" root="/news" shared="true" />

This Web site uses the default port numbers for HTTP and HTTPS communication.
If it did not, you would also add the cookie-domain attribute.

<session-tracking cookie-domain=".oracle.com" />

For more information about elements and attributes of the <web-site>,
<web-app>, and <session-tracking> elements, see the XML Appendix in the
Oracle Application Server Containers for J2EE Servlet Developer’s Guide.

Example 7–6 Creating an SSL Certificate and Configuring HTTPS

The following example uses keytool to create a test certificate and shows all of the
XML configuration necessary for HTTPS to work. To create a valid certificate for use
in production environments, see the keytool documentation.

1. Install the correct JDK

Ensure that JDK 1.3.x is installed. This is required for SSL with OC4J. Set the
JAVA_HOME to the JDK 1.3 directory. Ensure that the JDK 1.3.x JAVA_
HOME/bin is at the beginning of your path. This may be achieved by doing the
following:

UNIX

$ PATH=/usr/opt/java130/bin:$PATH
$ export $PATH
$ java -version
java version "1.3.0"

 Windows

set PATH=d:\jdk131\bin;%PATH%

Ensure that this JDK version is set as the current version in your Windows
registry. In the Windows Registry Editor under HKEY_LOCAL_
MACHINE/SOFTWARE/JavaSoft/Java Development Kit, set 'CurrentVersion'
to 1.3 (or later).

2. Request a certificate

a. Change directory to ORACLE_HOME/j2ee

Confidentiality Through SSL

Security 7-25

b. Create a keystore with an RSA private/public keypair using the keytool
command. In our example, we generate a keystore to reside in a file named
'mykeystore', which has a password of '123456’ and is valid for 21 days,
using the 'RSA' key pair generation algorithm with the following syntax:

keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456
-validity 21

Where:

■ the keystore option sets the filename where the keys are stored

■ the storepass option sets the password for protecting the keystore

■ the validity option sets number of days the certificate is valid

The keytool prompts you for more information, as follows:

keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456
-validity 21

What is your first and last name?
 [Unknown]: Test User
What is the name of your organizational unit?
 [Unknown]: Support
What is the name of your organization?
 [Unknown]: Oracle
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Test User, OU=Support, O=Oracle, L=Reading, ST=Berkshire, C=GB>
correct?
 [no]: yes

Enter key password for <mykey>
 (RETURN if same as keystore password):

Note: To determine your 'two-letter country code', use the ISO
country code list at the following URL:
http://www.bcpl.net/~jspath/isocodes.html.

Confidentiality Through SSL

7-26 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

The mykeystore file is created in the current directory. The default alias of the
key is mykey.

3. If you do not have a secure-web-site.xml file, then copy the
http-web-site.xml to $J2EE_HOME/config/secure-web-site.xml.

4. Edit secure-web-site.xml with the following elements:

a. Add secure="true" to the <web-site> element, as follows:

<web-site port="8888" display-name="Default Oracle Application Server
Containers for J2EE Web Site" secure="true">

b. Add the following new line inside the <web-site> element to define the
keystore and the password.

<ssl-config keystore="<Your-Keystore>"
keystore-password="<Your-Password>" />

Where <Your-Keystore> is the full path to the keystore and
<Your-Password> is the keystore password. In our example, this is as
follows:

<!-- Enable SSL -->
<ssl-config keystore="../../keystore" keystore-password="123456"/>

c. Change the web-site port number, to use an available port. For example, the
default for SSL ports is 443, so change the Web site port attribute to
port="4443". To use the default of 443, you have to be a super user.

d. Now save the changes to secure-web-site.xml.

5. If you did not have the secure-web-site.xml file, then edit server.xml to
point to the secure-web-site.xml file.

a. Uncomment or add the following line in the file server.xml so that the
secure-web-site.xml file is read.

<web-site path="./secure-web-site.xml" />

Note: The keystore path is relative to where the XML file resides.

Note: Even on Windows, you use a forward slash and not a back
slash in the XML files.

Confidentiality Through SSL

Security 7-27

b. Save the changes to server.xml.

6. Stop and re-start OC4J to initialize the secure-web-site.xml file additions.
Test the SSL port by accessing the site in a browser on the SSL port. If
successful, you will be asked to accept the certificate, since it is not signed by an
accepted authority.

When completed, OC4J listens for SSL requests on one port and non-SSL requests
on another. You can disable either SSL requests or non-SSL requests, by
commenting out the appropriate *web-site.xml in the server.xml
configuration file.

<web-site path="./secure-web-site.xml" /> - comment out this to remove SSL
<default-site path="./http-web-site.xml" /> - comment out this to
 remove non-SSL

Requesting Client Authentication with OC4J Standalone
OC4J supports a "client-authentication" mode in which the server explicitly requests
authentication from the client before the server will communicate with the client. In
this case, the client must have its own certificate. The client authenticates itself by
sending a certificate and a certificate chain that ends with a root certificate. OC4J
can be configured to accept only root certificates from a specified list in establishing
a chain of trust back to the client.

A certificate that OC4J trusts is called a trust point. This is the first certificate that
OC4J encounters in the chain from the client that matches one in its own keystore.
There are three ways to configure trust:

■ The client certificate is in the keystore.

■ One of the intermediate certificate authority certificates in the client’s chain is in
the keystore.

■ The root certificate authority certificate in the client’s chain is in the keystore.

OC4J verifies that the entire certificate chain up to and including the trust point is
valid to prevent any forged certificates.

If you request client authentication with the needs-client-auth attribute,
perform the following:

1. Decide which of the certificates in the client’s chain is to be your trust point.
Ensure that you either have control of the issue of certificates using this trust
point or that you trust the certificate authority as an issuer.

Confidentiality Through SSL

7-28 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

2. Import the intermediate or root certificate in the server keystore as a trust point
for authentication of the client certificate.

3. If you do not want OC4J to have access to certain trust points, make sure that
these trust points are not in the keystore.

4. Execute the preceding steps to create the client certificate, which includes the
intermediate or root certificate installed in the server. If you wish to trust
another certificate authority, obtain a certificate from that authority.

5. Save the certificate in a file on the client.

6. Provide the certificate on the client initiation of the HTTPS connection.

a. If the client is a browser, set the certificate in the client browser security
area.

b. If the client is a Java client, you must programmatically present the client
certificate and the certificate chain when initiating the HTTPS connection.

HTTPS Common Problems and Solutions
The following errors may occur when using SSL certificates:

Keytool Error: java.security.cert.CertificateException: Unsupported encoding
Cause: You cannot allow trailing whitespace in the keytool.

Action: Delete all trailing whitespace. If the error still occurs, add a new line in
your certificate reply file.

Keytool Error: KeyPairGenerator not available
Cause: You are probably using a keytool from an older JDK.

Action: Use the keytool from the latest JDK on your system. To ensure that you
are using the latest JDK, specify the full path for this JDK.

Keytool Error: Failed to establish chain from reply
Cause: The keytool cannot locate the root CA certificates in your keystore; thus,
the keytool cannot build the certificate chain from your server key to the trusted
root certificate authority.

Action: Execute the following:

keytool -keystore keystore -import -alias cacert -file cacert.cer (keytool
-keystore keystore -import -alias intercert -file inter.cer)

If you use an intermediate CA keytool, then execute the following:

Confidentiality Through SSL

Security 7-29

keystore keystore -genkey -keyalg RSA -alias serverkey keytool -keystore
keystore -certreq -file my.host.com.csr

Get the certificate from the Certificate Signing Request, then execute the
following:

keytool -keystore keystore -import -file my.host.com.cer -alias serverkey

No available certificate corresponds to the SSL cipher suites which are enabled
Cause: Something is wrong with your certificate.

IllegalArgumentException: Mixing secure and non-secure sites on the same ip +
port
Cause: You cannot configure SSL and non-SSL web-sites to listen on the same
port and IP address.

Action: Check to see that different ports are assigned within
secure-web-site.xml and http-web-site.xml files.

Keytool does not work on HP-UX
Cause: On HP-UX, it has been reported that the 'keytool' does not work with
the RSA option.

Action: Generate the key on another platform and FTP it to the HP-UX server.

General SSL Debugging
You can get more debug information from the JSSE implementation. To get a list of
options, start OC4J with:

java -Djavax.net.debug=help -jar oc4j.jar

Or, if you want to turn on full verbosity, use:

java -Djavax.net.debug=all -jar oc4j.jar

Both options will display:

■ Browser request header

■ Server HTTP header

■ Server HTTP body (HTML served)

■ Content length (before and after encryption)

■ SSL version

Confidentiality Through SSL

7-30 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

For UNIX, you could use the startup scripts in NOTE 150215.1 'Scripts to
Administer OC4J on Unix Platforms', and amend these.

Additional Information A-1

A
Additional Information

This appendix contains complete information about the following topics:

■ Description of XML File Contents

■ Elements in the server.xml File

■ Elements in the application.xml File

■ Elements in the orion-application.xml File

■ Elements in the application-client.xml File

■ Elements in the orion-application-client.xml File

■ Standalone OC4J Command-Line Options and Properties

■ Configuration and Deployment Examples

Description of XML File Contents

A-2 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Description of XML File Contents
OC4J uses configuration and deployment XML files. The following sections describe
each of these files and their function.

OC4J Configuration XML Files
This section describes the following XML files, which are necessary for OC4J
configuration:

■ server.xml

■ http-web-site.xml

■ jazn-data.xml

■ principals.xml

■ data-sources.xml

■ jms.xml

■ rmi.xml

server.xml
This file contains the configuration for the application server. The server.xml file is
the root configuration file—it contains references to other configuration files. In this
file, specify the following:

■ Library path, which is located in the application deployment descriptor

■ Global application, global Web application, and default Web site served

■ Maximum number of HTTP connections the server allows

■ Logging settings

■ Java compiler settings

■ Transaction time-out

■ SMTP host

■ Location of the data-sources.xml configuration

■ Location of the configuration for JMS and RMI

■ Location of the default and additional Web sites

Description of XML File Contents

Additional Information A-3

Specify these locations by adding entries that list the location of the Web site
configuration files. You can have multiple Web sites. The http-web-site.xml
file defines a default Web site; therefore, there is only one of these XML files. All
other Web sites are defined in web-site.xml configuration files. Register each
Web site within the server.xml file, as follows:

<web-site path="./http-web-site.xml" />
<web-site path="./another-web-site.xml" />

■ Pointers to all applications for the container to deploy and execute

Specify the applications that run on the container in the server.xml file. You
can have as many application directories as you want, and they do not have to
be located under the OC4J installation directory.

http-web-site.xml
This file contains the configuration for a Web site. In the http-web-site.xml file,
specify the following:

■ Host name or IP address, virtual host settings for this site, listener ports, and
security using SSL

■ Default Web application for this site

■ Additional Web applications for this site

■ Access-log format

■ Settings for user Web applications (for /~user/ sites)

■ SSL configuration

jazn-data.xml
This file contains security information for the OC4J server. It defines the user and
group configuration for employing the default JAZNUserManager.

In the jazn-data.xml file, specify the following:

■ Username and passwords

■ Name and description of users, groups, and roles

Note: The path that is designated is relative to the config/
directory.

Description of XML File Contents

A-4 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

principals.xml
This file contains security information for the OC4J server. It defines the user and
group configuration for employing the XMLUserManager, which is no longer the
default security manager. In the principals.xml file, specify the following:

■ Username and password for the client-admin console

■ Name and description of users/groups, and real name and password for users

■ Optional X.509 certificates for users

data-sources.xml
This file contains configuration for the data sources that are used. In addition, it
contains information on how to retrieve JDBC connections. In the
data-sources.xml file, specify the following:

■ JDBC driver

■ JDBC URL

■ JNDI paths to which to bind the data source

■ Username/password for the data source

■ Database schema to use

■ Inactivity time-out

■ Maximum number of connections allowed to the database

jms.xml
This file contains the configuration for the OC4J Java Message Service (JMS)
implementation. In the jms.xml file, specify the following:

■ Host name or IP address, and port number to which the JMS server binds

■ Settings for queues and topics to be bound in the JNDI tree

Note: Database schemas are used to make auto-generated SQL
work with different database systems. OC4J contains an XML file
format for specifying properties, such as type-mappings and
reserved words. OC4J comes with database schemas for MS SQL
Server/MS Access, Oracle, and Sybase. You can edit these or make
new schemas for your DBMS.

Description of XML File Contents

Additional Information A-5

■ Log settings

rmi.xml
This file contains configuration for the Remote Method Invocation (RMI) system. It
contains the setting for the RMI listener, which provides remote access for EJBs. In
the rmi.xml file, specify the following:

■ Host name or IP address, and port number to which the RMI server binds

■ Remote servers to which to communicate

■ Log settings

J2EE Deployment XML Files
The OC4J-specific deployment XML files contain deployment information for
different components. If you do not create the OC4J-specific files, they are
automatically generated when the application is deployed. You can edit
OC4J-specific deployment XML files manually. OC4J uses these files to map
environment entries, resources references, and security-roles to actual
deployment-specific values.

This section describes the following XML files necessary for J2EE application
deployment:

■ The J2EE application.xml File

■ The OC4J-Specific orion-application.xml File

■ The J2EE ejb-jar.xml File

■ The OC4J-Specific orion-ejb-jar.xml File

■ The J2EE web.xml File

■ The OC4J-Specific orion-web.xml File

■ The J2EE application-client.xml File

■ The OC4J-Specific orion-application-client.xml File

The J2EE application.xml File
This file identifies the Web or EJB applications that are contained within the J2EE
application. See "Elements in the application.xml File" on page A-18 for a list of the
elements.

Description of XML File Contents

A-6 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

The OC4J-Specific orion-application.xml File
This file configures the global application. In the orion-application.xml file,
specify the following:

■ Whether to auto-create and auto-delete tables for CMP beans

■ Which default data source to use with CMP beans

■ Security role mappings

■ Which user manager is the default for security

■ JNDI namespace-access rules (authorization)

See "Elements in the orion-application.xml File" on page A-20 for a list of the
elements.

The J2EE ejb-jar.xml File
This file defines the deployment parameters for the EJBs in this JAR file. See the Sun
Microsystems EJB specification for a description of these elements.

The OC4J-Specific orion-ejb-jar.xml File
This file is the OC4J-specific deployment descriptor for EJBs. In the
orion-ejb-jar.xml file, specify the following:

■ Time-out settings

■ Transaction retry settings

■ Session persistence settings

■ Transaction isolation settings

■ CMP mappings

■ OR mappings

■ Finder method specifications

■ JNDI mappings

■ Minimum and maximum instance pool settings

■ resource reference mappings

See the appendix in the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide for description of the elements.

Description of XML File Contents

Additional Information A-7

The J2EE web.xml File
This file contains deployment information about the servlets and JSPs in this
application. See the Sun Microsystems specifications for a description of these
elements.

The OC4J-Specific orion-web.xml File
This is the OC4J-specific deployment descriptor for mapping Web settings. This
XML file contains the following:

■ Auto-reloading (including modification-check time-interval)

■ Buffering

■ Charsets

■ Development mode

■ Directory browsing

■ Document root

■ Locales

■ Web timeouts

■ Virtual directories

■ Session tracking

■ JNDI mappings

■ Classloading priority for Web applications

See the appendix in the Oracle Application Server Containers for J2EE Servlet
Developer’s Guide for description of the elements.

The J2EE application-client.xml File
This file contains JNDI information for accessing the server application and other
client information. See "Elements in the application-client.xml File" on page A-28 for
a list of the elements.

The OC4J-Specific orion-application-client.xml File
This OC4J-specific deployment file is for the client application. It contains JNDI
mappings and entries for the client.

Elements in the server.xml File

A-8 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

See "Elements in the orion-application-client.xml File" on page A-31 for a list of the
elements.

Elements in the server.xml File
The server.xml file is where you perform the following tasks:

■ Configure OC4J

■ Reference other configuration files

■ Specify your J2EE application(s)

Configure OC4J
Configuring the OC4J server includes defining the following elements in the
server.xml file:

■ Library path

■ Global application, the global Web application, and the default Web site

■ Maximum number of HTTP connections the server allows

■ Logging settings

■ Java compiler settings

■ Transaction time-out

■ SMTP host

Reference Other Configuration Files
Referencing other configuration files in the server.xml file includes specifying
the following:

■ data-sources.xml location

■ jazn-data.xml location

■ jms.xml and rmi.xml locations

Several XML files and directories are defined in the server.xml file. The path to
these files or directories can be relative or absolute. If relative, the path should be
relative to the location of the server.xml file.

Elements in the server.xml File

Additional Information A-9

<application-server> Element Description
The top level element of the server.xml file is the <application-server>
element.

<application-server>

This element contains the configuration for an application server.

Attributes:

■ application-auto-deploy-directory=".../applications/auto"
—Specifies the directory from which EAR files are automatically detected and
deployed by the running OC4J server. In addition, it performs the Web
application binding for the default Web site.

■ auto-start-applications="true|false"—If set to true, all
applications defined in the <applications> elements are automatically
started when the OC4J server is started. If set to false, the applications are not
started unless their auto-start attribute is set to true. The default for
auto-start-applications is true.

■ application-directory=".../applications"— Specifies a directory in
which to store applications (EAR files). If none is specified (the default), OC4J
stores the information in j2ee/home/applications.

■ deployment-directory=".../application-deployments"—Specifies
the master location where applications that are contained in EAR files are
deployed. The location defaults to
j2ee/home/application-deployments/.

■ connector-directory—The location and file name of the
oc4j-connectors.xml file.

■ check-for-updates="true|false"—Default in standalone OC4J is
"true". If true, task manager checks for XML configuration file modifications.
Thus, if you set to false, you can disable automatic refreshing of the
configuration to any new XML modifications. Also, setting this attribute to false
stops the automatic deployment of any applications until you execute
admin.jar -updateConfig. If set to false, you cause the XML configuration
to refresh from the XML files and any necessary automatic deployment to occur
by using the admin.jar -updateConfig option.

■ recovery-procedure="automatic|prompt|ignore"— Specifies how the
EJB container recovers a global transaction (JTA) if an error occurs in the middle
of the transaction. If a CMP bean is in the middle of a global transaction when
an error occurs, then the EJB container saves the transactional state to a file. The

Elements in the server.xml File

A-10 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

next time OC4J is started, these attributes specify how to recover the JTA
transaction.

– automatic — automatically attempts recovery (the default)

– prompt — prompts the user (system in/out)

You may notice a prompt for recovery even if no CMP beans were
executing. This is caused by the OC4J server asking for permission to see
whether there is anything to recover.

– ignore — ignores recovery (useful in development environments or if you
are never executing a CMP entity bean)

■ taskmanager-granularity=milliseconds. The task manager is a
background process that performs cleanup. However, the task manager can be
expensive. You can manage when the task manager performs its duties through
this attribute, which sets how often the task manager is kicked off for cleanup.
Value is in milliseconds. Default is 1000 milliseconds.

Elements Contained Within <application-server>
Within the <application-server> element, you can configure the following
elements, which are listed alphabetically and not by DTD ordering:

<application>

An application is an entity with its own set of users, Web applications, and EJB JAR
files.

Attributes:

■ auto-start="true|false" — Specifies whether the application should be
automatically started when the OC4J server starts. The default is true. Setting
auto-start to false is useful if you have multiple applications installed and
want them to start on demand. This setting can improve general server startup
time and resource usage.

■ deployment-directory=".../application-deployments/myapp" —
Specifies a directory to store application deployment information. If none is
specified (the default), then OC4J looks in the global
deployment-directory, and if none exists there, it stores the information
inside the EAR file. The path can be relative or absolute. If relative, the path
should be relative to the location of the server.xml file.

■ name="anApplication" — Specifies the name used to reference the
application.

Elements in the server.xml File

Additional Information A-11

■ parent="anotherApplication" — The name of the optional parent
application. The default is the global application. Children see the namespace of
its parent application. This setting is used to share services such as EJBs among
multiple applications.

■ path=".../applications/myApplication.ear" /> — The path to the
EAR file containing the application code. In this example, the EAR file is named
myApplication.ear.

<compiler>

This element is deprecated for version 9.0.4 and later. See the <java-compiler>
element for the alternative. For previous releases, it specifies an alternative compiler
(such as Jikes) for EJB/JSP compiling.

Attributes:

■ classpath="/my/rt.jar" — Specifies an alternative or additional classpath
when compiling. Some compilers need an additional classpath (such as Jikes,
which needs the rt.jar file of the Java 2 VM to be included).

■ executable="jikes" /> — The name of the compiler executable to use,
such as Jikes or JVC.

<execution-order>

This element defines the order in which the startup classes are executed. The value
is an integer. OC4J loads from 0 on up. If there are duplicate numbers, then OC4J
chooses the ordering for those classes.

<global-application>

The default application for this server. This element acts as a parent to other
applications for object visibility.

Attributes:

■ name="default" — Specifies the application.

■ path=".../application.xml" /> — Specifies the path to the global
application.xml file, which contains the settings for the default application.
An application.xml file exists for each application as the standard J2EE
application descriptor file, which is different from this file. Although this
application.xml file has the same name, it exists to provide global settings
for all J2EE applications.

Elements in the server.xml File

A-12 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

<global-thread-pool>

You can specify unbounded, one, or two thread pools for an OC4J process through
this element. If you do not specify this element, then an infinite number of threads
can be created. See "Thread Pool Settings" on page 2-23 for a full description.

Attributes:

■ min —The minimum number of threads that OC4J can simultaneously execute.
By default, a minimum number of threads are preallocated and placed in the
thread pool when the container starts. Value is an integer. The default is 20. The
minimum value you can set this to is 10.

■ max —The maximum number of threads that OC4J can simultaneously execute.
New threads are spawned if the maximum size is not reached and if there are
no idle threads. Idle threads are used first, before a new thread is spawned.
Value is an integer. The default is 40.

■ queue —The maximum number of requests that can be kept in the queue.
Value is an integer. The default is 80.

■ keepAlive —The number of milliseconds to keep a thread alive (idle) while
waiting for a new request. This timeout designates how long an idle thread
remains alive. If the timeout is reached, the thread is destroyed. The minimum
time is one minute. Time is set in milliseconds. To never destroy threads, set this
timeout to a negative one.

Value is a long. The default is 600,000 milliseconds.

■ cx-min —The minimum number of connection threads that OC4J can
simultaneously execute. Value is an integer. The default is 20. The minimum
value you can set this to is 10.

■ cx-max —The maximum number of connection threads that OC4J can
simultaneously execute. Value is an integer. The default is 40.

■ cx-queue —The maximum number of connection requests that can be kept in
the queue. Value is an integer. The default is 80.

■ cx-keepAlive —The number of milliseconds to keep a connection thread
alive (idle) while waiting for a new request. This timeout designates how long
an idle thread remains alive. If the timeout is reached, the thread is destroyed.
The minimum time is one minute. Time is set in milliseconds. To never destroy
threads, set this timeout to a negative one.

Value is a long. The default is 600,000 milliseconds.

Elements in the server.xml File

Additional Information A-13

■ debug —If true, print the application server thread pool information at startup.
The default is false.

<global-web-app-config>

Attributes:

■ path— The path where the web-application.xml file is located.

path=".../web-application.xml" />

<init-library>

Attributes:

■ path— The path in which the startup and shutdown classes are located. The
path indicates the directory in which the class resides or the directory and JAR
filename of the JAR where the class is archived. If more than one directory or
JAR file exists, then supply an <init-library> element for each directory
and JAR filename.

<init-library path="../xxx">

<init-param>

Attributes:

■ Defines the key-value pairs of the parameters to pass into the startup class.

<javacache-config>

Attributes:

■ path—Specifies the path to the javacache.xml file.

<javacache-config path="../../../javacache/admin/javacache.xml" />

<java-compiler>

You can specify an alternative compiler—either in or out of process—for your JSP
and EJB compilation. The default compiler is an out of process javac compiler
found in the JDK bin directory.

Attributes:

■ name—Specify the name of the compiler to use. Valid compiler names are as
follows:

* for in-process compilers—modern, classic, javac or ojc

* for out-of-process compilers (forked)—modern, javac, ojc, or jikes

Elements in the server.xml File

A-14 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

These names are defined as follows:

* javac—the standard compiler name for all JDKs.

* classic—the standard compiler of JDK 1.1/1.2.

* modern—the standard compiler of JDK 1.3/1.4.

* jikes—the Jikes compiler.

* ojc—The Oracle Java compiler.

■ in-process—If true, the compiler runs in the process. If false, the compiler
runs out of the process. Most compilers can execute both in and out of the
process. The exceptions are as follows:

* The classic compiler cannot run out of the process; thus, the
in-process attribute is always true.

* The jikes compiler cannot run in-process; thus, the in-process
attribute is always false.

■ encoding—Specify the type of character encoding for the source file, such as
UTF-8, EUCJIS, or SJIS. Encoding is supported only by the javac compiler. The
default is determined by the language version of the JVM that is installed.

■ bindir—Provide the absolute path to the compiler directory. You do not need
to specify this attribute for javac, modern, or classic as the JDK bin
directory is searched for this compiler.

The syntax is specific to the operating system platform:

* Sun Microsystems Solaris example—If you are using jikes, which is in
/usr/local/bin/jikes, then specify the following:

name="jikes"
bindir="/usr/local/bin"

* Microsoft Windows example—To specify jikes, which is located in
c:\jdk1.3.1\bin\jikes.exe, specify the following:

name="jikes"
bindir="c:\\jdk1.3.1\\bin"

■ extdirs—Specifies extension directories that the compilation uses to compile
against. The default is your JDK extension directories. You can specify multiple
directories where each directory is separated by a colon. Each JAR archive in
the specified directories is searched for class files. You can specify certain
directories to be searched by modifying the -Djava.ext.dirs system

Elements in the server.xml File

Additional Information A-15

property. The jikes compiler requires that you specify the extension
directories in either this attribute or in the -Djava.ext.dirs system property.

The following four examples define alternate compilers in this element:

<java-compiler name="jikes" bindir="C:\java\jikes\bin"
in-process="false" />

<java-compiler name="ojc" bindir="C:\java\jdev\jdev\bin"
in-process="false"/>

<java-compiler name="classic" in-process="true" />
<java-compiler name="modern" in-process="true" />

<jms-config>

Attribute:

■ path— Specifies the path to the jms.xml file.

path=".../jms.xml"

<log>

<file>

Attribute:

■ path=".../log/server.log" — Specifies a relative or absolute path to
a file where log events are stored.

<mail>

An e-mail address where log events are forwarded. You must also specify a
valid mail-session if you use this option.

Attribute:

■ address="my@mail.address" — Specifies the mail address.

<odl>

The ODL log entries are each written out in XML format in its respective log
file. The log files have a maximum limit. When the limit is reached, the log files
are overwritten.

When you enable ODL logging, each message goes into its respective log file,
named logN.xml, where N is a number starting at one. The first log message
starts the log file, log1.xml. When the log file size maximum is reached, the
second log file is opened to continue the logging, log2.xml. When the last
logfile is full, the first log file, log1.xml is erased and a new one is opened for

Elements in the server.xml File

A-16 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

the new messages. Thus, your log files are constantly rolling over and do not
encroach on your disk space.

Attributes:

■ path: Path and folder name of the log folder for this area. You can use an
absolute path or a path relative to where the configuration XML file exists,
which is normally in the j2ee/home/config directory. This denotes where
the log files will reside for the feature that the XML configuration file is
concerned with. For example, modifying this element in the server.xml file
denotes where the server log files are written.

■ max-file-size: The maximum size in KB of each individual log file.

■ max-directory-size: The maximum size of the directory in KB. The default
directory size is 10 MB.

New files are created within the directory, until the maximum directory size is
reached. Each log file is equal to or less than the maximum specified in the
attributes.

<max-http-connections>

Defines the maximum number of concurrent connections any given Web site can
accept at a single point in time. If text exists inside the element, it is used as a
redirect-URL when the limit is reached.

Attributes:

■ max-connections-queue-timeout="10" — When the maximum number
of connections are reached, this is the number of seconds that can pass before
the connections are dropped and a message is returned to the client stating that
the server is either busy or connections will be redirected. The default is 10
seconds.

■ socket-backlog — The number of connections to queue up before denying
connections at the socket level. The default is 30.

■ value — The maximum number of connections.

<rmi-config>

Attribute:

■ path— Specifies the path to the rmi.xml file.

path=".../rmi.xml"

Elements in the server.xml File

Additional Information A-17

<sep-config>

The <sep-config> element in this file specifies the pathname, normally
internal-settings.xml, for the server extension provider properties.

Attribute:

■ path—The path of the server extension provider properties.

<sfsb-config>

Passivation for stateful session beans is automatically done, unless you set the
enable-passivation attribute for this element to false. For more information on
stateful session bean passivation, see the Advanced chapter in the Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Attribute

■ enable-passivation—Default is true, which means that stateful session
bean passivation occurs. If you have a situation where your stateful session
beans are not in a state to be passivated, set this attribute to false.

<shutdown-classes>

Shutdown classes can be defined by the user, and are executed after undeployment,
but before the core services are stopped.

<shutdown-class>

Each startup class is defined within the <startup-class> element.

Attributes:

■ classname—The classname of the user-defined startup class.

<startup-classes>

Startup classes can be defined by the user, and will be executed after the core
services (JMS, RMI) are started, but before applications are deployed. The shutdown
classes are executed after undeployment, but before the core services are stopped.

<startup-class>

Each startup class is defined within the <startup-class> element.

Attributes:

■ classname—The classname of the user-defined startup class.

Elements in the application.xml File

A-18 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

■ failure-is-fatal—If true, if an exception is thrown, then OC4J logs the
exception and exit. If false, OC4J logs the exception and then continues. Default
is false.

<transaction-config>

Transaction configuration for the server.

Attribute:

■ timeout="30000" — Specifies the maximum amount of time (in
milliseconds) that a transaction can take to finish before it is rolled back due to a
timeout. The default value is 30000. This timeout will be a default timeout for
all transactions that are started in OC4J. You can change it by using the dynamic
API—UserTransaction.setTransactionTimeout(milliseconds).

<web-site>

Attribute:

■ path— The path to a *web-site.xml file that defines a Web site. For each
Web site, you must specify a separate *web-site.xml file. This example
shows that a Web site is defined in the my-web-site.xml file.

path=".../my-web-site.xml"

Elements in the application.xml File

<application> Element Description
The top level element of the application.xml file is the <application>
element.

Elements Contained Within <application>
Within the <application> element, the following elements, which are listed
alphabetically and not by DTD ordering, can be configured:

<alt-dd>path/to/dd</alt-dd>

The alt-dd element specifies an optional URI to the post-assembly version of the
deployment descriptor file for a particular J2EE module. The URI must specify the
full pathname of the deployment descriptor file relative to the application's root
directory. If alt-dd is not specified, the deployer must read the deployment
descriptor from the default location and file name required by the respective
component specification.

Elements in the application.xml File

Additional Information A-19

<connector>context</connector>

The connector element specifies the URI of a resource adapter archive file,
relative to the top level of the aplication package.

<context-root>thedir/</context-root>

The context-root element specifies the context root of a web application.

<description>A description.</description>

The description element provides a human readable description of the
application. The description element should include any information that the
application assembler wants to provide the deployer.

<display-name>The name.</display-name>

The display-name element specifies an application name. The application name is
assigned to the application by the application assembler and is used to identify the
application to the deployer at deployment time.

<ejb>pathToEJB.jar</ejb>

The ejb element specifies the URI of a EJB JAR, relative to the top level of the
application package.

<icon>

The icon element contains a small-icon and a large-icon element which
specify the location within the application for a small and large image used to
represent the application in a GUI tool.

<java>pathToClient.jar</java>

The java element specifies the URI of a Java application client module, relative to
the top level of the application package.

<large-icon>path/to/icon.gif</large-icon>

The large-icon element contains the location within the application of a file
containing a large (32x32 pixel) icon image. The image must be either GIF or JPEG
format and the filename must end with the extension of ".gif" or ".jpg".

<module>

The module element represents a single J2EE module and contains an EJB, Java, or
Web element, which indicates the module type and contains a path to the module
file, and an optional alt-dd element, which specifies an optional URI to the
post-assembly version of the deployment descriptor. The application deployment

Elements in the orion-application.xml File

A-20 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

descriptor must have one module element for each J2EE module in the application
package.

<role-name>nameOfRole</role-name>

The name of the role.

<security-role>

The security-role element contains the definition of a security role which is
global to the application. The definition consists of a description of the security role,
and the security role name. The descriptions at this level override those in the
component level security role definitions and must be the descriptions tool display
to the deployer.

<small-icon>path/to/icon.gif</small-icon>

The small-icon element contains the location within the application of a file
containing a small (16x16 pixel) icon image. The image must be either GIF or JPEG
format and the filename must end with the extension of ".gif" or ".jpg".

<web>

The web element contains the web-uri and context-root of a Web application
module.

<web-uri>pathTo.war</web-uri>

The web-uri element specifies the URI of a web application file, relative to the top
level of the application package.

Elements in the orion-application.xml File

<orion-application> Element Description
The top level element of the orion-application.xml file is the
<orion-application> element.

Attributes:

■ autocreate-tables - Whether or not to automatically create database tables
for CMP beans in this application. The default is true.

■ autodelete-tables - Whether or not to automatically delete old database
tables for CMP beans when redeploying in this application. The default is false.

Elements in the orion-application.xml File

Additional Information A-21

■ default-data-source - The default data source to use if other than server
default. This must point to a valid CMT data source for this application if
specified.

■ deployment-version - The version of OC4J that this JAR was deployed
against, if it is not matching the current version then it will be redeployed. This
is an internal server value; do not edit.

■ treat-zero-as-null - Whether or not to treat read zero's as null's when
they represent primary keys. The default is false.

Elements Contained Within <orion-application>
Within the <orion-application> element, the following elements, which are
listed alphabetically and not by DTD ordering, can be configured:

<argument value="theValue" />

An argument used when invoking the client.

Attribute:

■ value - The value of the argument.

<arguments>

A list of arguments to used when invoking the application client if starting it
in-process (auto-start="true").

<client-module auto-start="true|false"
deployment-time="073fc2ab513bc3ce" path="myappclient.jar"
user="theUser">

An application client module of the application. An application client is a GUI or
console-based standalone client that interacts with the server.

Attributes:

■ auto-start - Whether or not to auto-start the client (in-process) at server
startup. The default is false.

■ deployment-time - Last deploy time attribute. Internal to OC4J; do not edit.

■ path - The path (relative to the enterprise archive or absolute) to the
application-client.

■ user - User to run the client as if run in-process (autostart="true"). Must be
specified if auto-start is activated.

Elements in the orion-application.xml File

A-22 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

<commit-coordinator>

Configure the two-phase commit engine.

<commit-class
class="com.evermind.server.OracleTwoPhaseCommitDriver" />

Attribute:

■ class - Configures the OracleTwoPhaseCommitDriver class for two-phase
commit engines.

<connectors path="./oc4j-connectors.xml" />

Attribute:

■ path - The name and path of the oc4j-connectors.xml file. If no
<connectors> element is specified, then the default path is
$OC4J_HOME/connectors/rarname./oc4j-connectors.xml.

<data-sources path="./data-sources.xml" />

Attribute:

■ path - The path.

<description>A short description</description>

A short description of this component.

<ejb-module path="myEjbs.jar" remote="true|false" />

An EJB JAR module of the application.

Attributes:

■ path - The path (relative to the enterprise archive or absolute) to the ejb-jar.

■ remote - true/false value stating whether or not to activate the EJB
instances on this node or to look them up remotely from another server.The
default is false.

<file path="../log/server.log" />

A relative/absolute path to log events to.

Attribute:

■ path - The path to the log file.

<group name="theGroup" />

Elements in the orion-application.xml File

Additional Information A-23

A group that this security-role-mapping implies. That is, all members of the
specified group are included in this role.

Attribute:

■ name - The name of the group.

<jazn provider="XML" location="./jazn-data.xml" />

Configure the OracleAS JAAS Provider to use the XML-based provider type.

Attributes:

■ provider - XML

■ location - Path to file. For example: ./jazn-data.xml This can be an
absolute path, or a path relative to the jazn.xml file, where the OracleAS
JAAS Provider first looks for the jazn-data.xml in the directory containing
the jazn.xml file. Optional if jazn.xml file configured, otherwise Required

■ persistence - Values can be NONE (Do not persist changes), ALL (Persist
changes after every modification), VM_EXIT - (Default- Persist changes when VM
exits)

■ default-realm - A realm name. For example: sample_subrealm. Optional if only
one realm is configured.

<jazn-web-app auth-method="SSO" runas-mode="false"
doasprivileged-mode="true" />

The filter element of JAZNUserManager.

Attributes:

■ auth-method - Set auth-method to SSO (single sign-on). If you do not set this
parameter, it defaults to null.

■ The runas-mode and doasprivileged-mode settings are described in
Table A–1. See the Oracle Application Server Containers for J2EE Security Guide for
more information.

Elements in the orion-application.xml File

A-24 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

<library path="../lib/" />

A relative/absolute path/URL to a directory or a JAR/ZIP to add as a library-path
for this server. Directories are scanned for JARS/ZIP files to include at startup.

Attribute:

■ path - The path.

<log>

Logging settings.

<odl>

The ODL log entries are each written out in XML format in its respective log
file. The log files have a maximum limit. When the limit is reached, the log files
are overwritten.

When you enable ODL logging, each message goes into its respective log file,
named logN.xml, where N is a number starting at one. The first log message
starts the log file, log1.xml. When the log file size maximum is reached, the
second log file is opened to continue the logging, log2.xml. When the last
logfile is full, the first log file, log1.xml is erased and a new one is opened for
the new messages. Thus, your log files are constantly rolling over and do not
encroach on your disk space.

Attributes:

■ path: Path and folder name of the log folder for this area. You can use an
absolute path or a path relative to where the configuration XML file exists,
which is normally in the j2ee/home/config directory. This denotes where

Table A–1 runas-mode and doasprivileged-mode Settings

If runas-mode is
Set To...

If doasprivileged-mode Is
Set To... Then...

true true (default) Subject.doAsPrivileged in a
privilegedExceptionAction block that calls
chain.doFilter (myrequest,response)

true false Subject.doAs in a privilegedExceptionAction
block that calls chain.doFilter
(myrequest,response)

false (default) true chain.doFilter (myrequest,response)

false false chain.doFilter (myrequest,response)

Elements in the orion-application.xml File

Additional Information A-25

the log files will reside for the feature that the XML configuration file is
concerned with. For example, modifying this element in the server.xml file
denotes where the server log files are written.

■ max-file-size: The maximum size in KB of each individual log file.

■ max-directory-size: The maximum size of the directory in KB. The default
directory size is 10 MB.

New files are created within the directory, until the maximum directory size is
reached. Each log file is equal to or less than the maximum specified in the
attributes.

<mail address="my@mail.address" />

An e-mail address to log events to. A valid mail-session also needs to be specified if
this option is used.

Attribute:

■ address - The mail-address.

<mail-session location="mail/TheSession"
smtp-host="smtp.server.com">

The session SMTP-server host (if using SMTP).

Attributes:

■ location - The location in the namespace to store the session at.

■ smtp-host - The session SMTP-server host (if using SMTP).

<namespace-access>

Namespace (naming context) security policy for RMI clients.

<namespace-resource root="the/path">

A resource with a specific security setting.

Attribute:

■ root - The root of the part of the namespaec that this rule applies to.

<password-manager>

Specifies the UserManager that is used for the lookup of hidden passwords. If
omitted, the current UserManager is used for authentication and authorization.
For example, you can use a OracleAS JAAS Provider LDAP UserManager for the

Elements in the orion-application.xml File

A-26 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

overall UserManager, but use a OracleAS JAAS Provider XML UserManager for
checking hidding passwords.

To identify a UserManager, provide a <jazn> element definition within this
element, as follows:

<password-manager>
<jazn ...>

</password-manager>

<persistence path="./persistence" />

A relative (to the application root) or absolute path to a directory where application
state should be stored across restarts.

Attribute:

■ path - The path (relative to the enterprise archive or absolute) to the
persistence directory.

<principals path="principals.xml" />

Attribute:

■ path - The path (relative to the enterprise archive or absolute) to the principals
file.

<property name="theName" value="theValue" />

Contains a name/value pair initialization param.

Attributes:

■ name - The name of the parameter.

■ value - The value of the parameter.

<read-access>

The read-access policy.

<resource-provider>

Define a JMS resource provider. To add a custom <resource-provider>, add the
following to your orion-application.xml file:

<resource-provider class="providerClassName" name="JNDI name">
 <description> description </description>
 <property name="name" value="value" />
</resource-provider>

Elements in the orion-application.xml File

Additional Information A-27

In place of the user-replaceable constructs (those in italics) in the preceding code, do
the following:

■ Replace the value providerClassName of the class attribute with the name
of the resource-provider class.

■ Replace the value JNDI name of the name attribute with a name by which to
identify the resource provider. This name will be used in finding the resource
provider in the application’s JNDI as "java:comp/resource/name/".

■ Replace the value description of the description element with a
description of the specific resource provider.

■ Replace the values name and value of the corresponding attributes with the
same name in any property elements that the specific resource provider needs
to be given as parameters.

<security-role-mapping impliesAll="true|false" name="theRole">

The runtime mapping (to groups and users) of a role. Maps to a security-role of the
same name in the assembly descriptor.

Attributes:

■ impliesAll - Whether or not this mapping implies all users. The default is
false.

■ name - The name of the role

<user name="theUser" />

A user that this security-role-mapping implies.

Attribute:

■ name - The name of the user.

<user-manager class="com.name.of.TheUserManager"
display-name="Friendly UserManager name">

Specifies an optional user-manager to use. For example, user-managers are
com.evermind.sql.DataSourceUserManager,
com.evermind.ejb.EJBUserManager, and so on. These are used to integrate
existing systems and provide custom user-managers for Web applications.

Attributes:

■ class - The fully qualified classname of the user-manager.

■ display-name - A descriptive name for this UserManager instance.

Elements in the application-client.xml File

A-28 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

<web-module id="myWebApp" path="myWebApp.war" />

A Web application module of the application. Each Web application can be installed
on any site and in any context on those sites (for instance
http://www.myserver.com/myapp/).

Attributes:

■ id - The name used to reference this web-application when used in web-sites
etc.

■ path - The path (relative to the enterprise archive or absolute) to the
web-application.

<write-access>

The write access policy.

Elements in the application-client.xml File

<application-client> Element Description
The top level element of the application-client.xml file is the
<application-client> element.

<application-client>

The application-client element is the root element of an application client
deployment descriptor. The application client deployment descriptor describes the
EJB components and external resources referenced by the application client.

Elements Contained Within <application-client>
Within the <application-client> element, the following elements, which are
listed alphabetically and not by DTD ordering, can be configured:

<callback-handler>

The callback-handler element names a class provided by the application. The
class must have a no args constructor and must implement the
javax.security.auth.callback.CallbackHandler interface. The class will
be instantiated by the application client container and used by the container to
collect authentication information from the user.

<description>The description</description>

A short description.

Elements in the application-client.xml File

Additional Information A-29

<display-name>The name</display-name>

The display-name element contains a short name that is intended to be displayed
by tools.

<ejb-link>EmployeeRecord</ejb-link>

The ejb-link element is used in the ejb-ref element to specify that an EJB
reference is linked to an enterprise bean in the encompassing J2EE Application
package. The value of the ejb-link element must be the ejb-name of an
enterprise bean in the same J2EE Application package.

<ejb-ref>

The ejb-ref element is used for the declaration of a reference to an enterprise
bean's home. The declaration consists of an optional description; the EJB reference
name used in the code of the referencing application client; the expected type of the
referenced enterprise bean; the expected home and remote interfaces of the
referenced enterprise bean; and an optional ejb-link information. The optional
ejb-link element is used to specify the referenced enterprise bean.

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

The ejb-ref-name element contains the name of an EJB reference. The EJB
reference is an entry in the enterprise bean's environment. It is recommended that
name is prefixed with "ejb/".

<ejb-ref-type>Entity/Session</ejb-ref-type>

The ejb-ref-type element contains the expected type of the referenced
enterprise bean. The ejb-ref-type element must be one of the following: Entity
Session

<env-entry>

The env-entry element contains the declaration of an Enterprise JavaBean's
environment entries. The declaration consists of an optional description, the name
of the environment entry, and an optional value.

<env-entry-name>minAmount</env-entry-name>

The env-entry-name element contains the name of an Enterprise JavaBean's
environment entry.

<env-entry-type>java.lang.String</env-entry-type>

The env-entry-type element contains the fully-qualified Java type of the
environment entry value that is expected by the enterprise bean's code. The
following are the legal values of env-entry-type: java.lang.Boolean,

Elements in the application-client.xml File

A-30 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and
java.lang.Float.

<env-entry-value>100.00</env-entry-value>

The env-entry-value element contains the value of an Enterprise JavaBean's
environment entry.

<home>com.aardvark.payroll.PayrollHome</home>

The home element contains the fully-qualified name of the Enterprise JavaBean's
home interface.

<icon>

The icon element contains a small-icon and large-icon element which
specify the URIs for a small and a large GIF or JPEG icon image used to represent
the application client in a GUI tool.

<large-icon>lib/images/employee-service-icon32x32.jpg</large-i
con>

The large-icon element contains the name of a file containing a large (32 x 32)
icon image. The file name is a relative path within the application client JAR file.
The image must be either in the JPEG or GIF format, and the file name must end
with the suffix ".jpg" or ".gif" respectively. The icon can be used by tools.

<remote>com.wombat.empl.EmployeeService</remote>

The remote element contains the fully-qualified name of the Enterprise JavaBean's
remote interface.

<res-auth>Application/Container</res-auth>

The res-auth element specifies whether the Enterprise JavaBean code signs on
programmatically to the resource manager, or whether the Container will sign on to
the resource manager on behalf of the bean. In the latter case, the Container uses
information that is supplied by the Deployer. The value of this element must be one
of the two following: Application or Container

<resource-env-ref>

The resource-env-ref element contains a declaration of an application’s
reference to an administered object associated with a resource in the application’s
environment. It consists of an optional descrioption, the resource environment
reference name, and an indication of the resource environment reference type
expected by the application code.

Elements in the orion-application-client.xml File

Additional Information A-31

<resource-env-ref-name>

The resource-env-ref-name element specifies the name of a resource
environment entry name used in the application code.

<resource-env-ref-type>

The resource-env-ref-type element specifies the type of a resource
environment reference.

<resource-ref>

The resource-ref element contains a declaration of Enterprise JavaBean's
reference to an external resource. It consists of an optional description, the resource
factory reference name, the indication of the resource factory type expected by the
enterprise bean code, and the type of authentication (Bean or Container).

<res-ref-name>name</res-ref-name>

The res-ref-name element specifies the name of a resource factory reference.

<res-sharing-scope>Shareable</res-sharing-scope>

The res-sharing-scope element specifies whether connections obtained
through the given resource manager connection factory reference can be shared. The
value of this element, if specified, must be one of the following: Shareable or
Unshareable. The default value is Shareable.

<res-type>javax.sql.DataSource</res-type>

The res-type element specifies the type of the data source. The type is specified
by the Java interface (or class) expected to be implemented by the data source.

<small-icon>lib/images/employee-service-icon16x16.jpg
</small-icon>

The small-icon element contains the name of a file containing a small (16 x 16)
icon image. The file name is a relative path within the application client JAR file.
The image must be either in the JPEG or GIF format, and the file name must end
with the suffix ".jpg" or ".gif" respectively. The icon can be used by tools.

Elements in the orion-application-client.xml File

<orion-application-client> Element Description
The top level element of the orion-application-client.xml file is the
<orion-application-client> element.

Elements in the orion-application-client.xml File

A-32 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

<orion-application-client>

An orion-application-client.xml file contains the deploy time information for a
J2EE application client. It complements the application client assembly information found in
application-client.xml.

Elements Contained Within <orion-application-client>
Within the <orion-application-client> element, the following elements,
which are listed alphabetically and not by DTD ordering, can be configured:

<context-attribute name="name" value="value" />

An attribute sent to the context. The only mandatory attribute in JNDI is the
'java.naming.factory.initial,' which is the classname of the context factory
implementation.

Attributes:

■ name - The name of the attribute.

■ value - The value of the attribute.

<ejb-ref-mapping location="ejb/Payroll" name="ejb/Payroll" />

The ejb-ref element is used for the declaration of a reference to another
enterprise bean's home. The ejb-ref-mapping element ties this to a
JNDI-location when deploying.

Attributes:

■ location - The JNDI location to look up the EJB home from.

■ name - The ejb-ref name. Matches the name of an ejb-ref in
application-client.xml.

<env-entry-mapping
name="theName">deploymentValue</env-entry-mapping>

Overrides the value of an env-entry in the assembly descriptor. It is used to keep
the EAR (assembly) clean from deployment-specific values. The body is the value.

Attribute:

■ name - The name of the context parameter.

<lookup-context location="foreign/resource/location">

The specification of an optional javax.naming.Context implementation used
for retrieving the resource. This is useful when hooking up with third party
modules, such as a third party JMS server for instance. Either use the context

Standalone OC4J Command-Line Options and Properties

Additional Information A-33

implementation supplied by the resource vendor or if none exists write an
implementation which in turn negotiates with the vendor software.

Attributes:

■ location - The name looked for in the foreign context when retrieving the
resource.

<resource-env-ref-mapping location="jdbc/TheDS" >

The resource-env-ref element is used for the declaration of a reference to an
external resource, such as a data source, JMS queue, mail session, or similar. The
resource-env-ref-mapping ties that element to a JNDI location during
deployment.

Attributes:

■ location - The JNDI location to bind the resource to.

<resource-ref-mapping location="jdbc/TheDS"
name="jdbc/TheDSVar">

The resource-ref element is used for the declaration of a reference to an external
resource such as a data source, JMS queue, mail session or similar. The
resource-ref-mapping ties this to a JNDI-location when deploying.

Attributes:

■ location - The JNDI location to look up the resource home from.

■ name - The resource-ref name. Matches the name of an resource-ref in
application-client.xml.

Standalone OC4J Command-Line Options and Properties
You start OC4J through oc4j.jar. You manage OC4J through the admin.jar tool.
The following sections describe the options for each JAR.

■ Options for the OC4J Server JAR

■ Options for the OC4J Administration Management JAR

Options for the OC4J Server JAR
The oc4j.jar command-line options enable you to start, stop, and install OC4J.

Table A–2 lists all the oc4j.jar command-line options:

Standalone OC4J Command-Line Options and Properties

A-34 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Options for the OC4J Administration Management JAR
The admin.jar command-line tool enables you to administer any stand alone
OC4J from a client-admin console using a command line.

The syntax is as follows:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin_id
 admin_password options

The options for the admin.jar command-line tool cover the four subjects below:

■ General OC4J administration described in Table A–3.

■ Application deployment described in Table A–4.

■ Web site administration described in Table A–5.

■ Data source administration described in Table A–6.

Table A–2 OC4J Command-Line Options

Command-Line Options Description

-install Installs the server and activates the admin account. Rewrites text files to match
the operating system line feed. This should be used only the first time.

-quiet Supress standard output.

-config Specifies a location for the server.xml file.

-out [file] Specifies a file to route the standard output to. The file contains messages that
are printed to System.out, as well as the messages sent to output through
the servlet logging interface. If not specified, all output is written to standard
out.

-err [file] Specifies a file to route standard error to. The file contains messages that are
printed to System.err. If not specified, all errors are written to standard
error.

-verbosity Define an integer between 1 and 10 to set the verbosity level of the message
output. Example: -verbosity 10. See Example 2–5 for an example of this
option.

-monitorResourceThreads Enables backup debugging of thread resources. Enable this only if you have
problems that relates to threads getting stuck in critical sections of code.

-userThreads Enables context lookup support from user-created threads.

-version Prints the version and exits.

-? -help Prints the help message.

Standalone OC4J Command-Line Options and Properties

Additional Information A-35

General OC4J Administration
Table A–3 lists the admin.jar options for general OC4J administration. For
example, the following command shuts down the OC4J server:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin_id
 admin_password -shutdown

Application Deployment
Table A–4 lists the admin.jar options for OC4J application administration. For
example, the following command structure is used to deploy an application:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin_id
 admin_password -deploy -file path/filename
 -deploymentName app_name -targetPath deploy_dir

The following command structure is used to bind a Web application:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin_id
 admin_password -bindWebApp app_name web_app_name
 web_site_name context_root

Table A–3 Options for OC4J Administration

Option Description

-shutdown
[ordinary | force]
[reason]

Shuts down the OC4J server. The default is "ordinary."
Ordinary allows each thread to terminate normally. Force
terminates all threads immediately. The reason is a string that
is logged with the termination.

-restart
[reason]

Restarts the OC4J server. The container must have been started
with oc4j.jar. The reason is a string that is logged with the
restart.

Standalone OC4J Command-Line Options and Properties

A-36 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Table A–4 Options for Application Deployment

Option Description

-deploy Deploy (redeploy) an application. Supply application
information in the following subswitches:

-file path/filename: Required. The path and filename of
the EAR file to deploy.

-deploymentName app_name: Required. The user-defined
application deployment name. This same name is used to
identify the application within OC4J. It is also provided when
you want to undeploy the application.

-targetPath deploy_dir: Optional. The path on the
server node to deploy archive into. Default is the
applications/ directory. It is best to provide a target path to
the directory where the EAR file is copied for deployment.

If -targetPath is not specified, the EAR file is copied to the
applications/ directory. OC4J maintains a unique name for
the EAR file. Thus, when you redeploy the EAR file, OC4J
renames the file by prepending an underscore character (’_’) in
front of the name to ensure that another application’s EAR file
is not overwritten. Each successive deployment will cause
another underscore character to be prepended to the EAR file.
However, if it is the same application, the applications/
directory contains a separate EAR file for each deployment. If
you provide a target path, this problem does not occur.

-parent parent_appname: Optional. The parent
application of this application. When deployed, any method
within the child application can invoke any method within the
parent application. This is a means to enable methods in one
JAR to see EJBs that have been deployed in another JAR. This
is useful to deploy all service EJBs in a single JAR file, where its
users declare the service application as its parent. The default
is the global application.

-deploymentDirectory path: Optional. If not specified,
the application is deployed into the
application-deployments/ directory. To change where
the application is deployed, provide a path with this option. If
you supply the string "[NONE]", the deployment
configurations are always read from the EAR file each time the
application is deployed.

Standalone OC4J Command-Line Options and Properties

Additional Information A-37

-bindWebApp
app_name
web_app_name
web_site_name
context_root

Bind a Web application to the specified site and root.

■ app_name is the application name, which is the same
name used in -deploymentName on the -deploy
option. Also note that this is the same name that is saved
in the <application name=app_name> attribute in the
server.xml file.

■ web_app_name is the name of the WAR file contained
within the EAR file—without the .WAR extension.

■ web_site_name is the name of the
name-web-site.xml file that denotes the Web site that
this Web application should be bound to. This is the file
that will receive the Web application definition.

■ context_root is the root context for the Web module.

This option creates an entry in the OC4J name-web-site.xml
configuration file that was denoted in the web_site_name
variable.

-updateConfig If you have set check-for-updates to false, then OC4J
does not automatically refresh modifications of the XML files.
You have to execute this flag to have OC4J upload all of the
new changes to these files.

-undeploy app_name Removes the deployed J2EE application from the OC4J Web
server. The app_name is the name provided on the
-deploymentName subswitch. This results in the following:

■ Application is removed from the OC4J runtime and the
server.xml file.

■ Bindings for all the application’s Web modules are
removed from all the Web sites to which the Web modules
were bound.

■ Application files are removed from both the
applications and application-deployments
directories.

-keepFiles: Optional subswitch that prevents application
files from being removed. However, the application is removed
from the runtime and the Web modules are unbound.

-deploymentDirectory
"[NONE]"

If you specify this flag as "[NONE]", then OC4J uses the
orion-ejb-jar.xml deployment descriptor in the current
deployment to be used instead of the deployment descriptor
from a previous deployment within the
application-deployments directory.

Table A–4 Options for Application Deployment (Cont.)

Option Description

Standalone OC4J Command-Line Options and Properties

A-38 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Adding Web Sites
The -site option enables you to add Web site configuration to the XML files.
Table A–5 lists all the subswitches for the -site option of the admin.jar
command-line tool.

For example, the following command structure installs a new Web site:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin_id
 admin_password -site -add -host hostname -port portnumber
 -display-name name -virtual-hosts virtual_host

-iiopClientJar You can convert an EJB to use RMI/IIOP, making it possible for
EJBs to invoke one another across EJB containers. See the
RMI/IIOP chapter in the Oracle Application Server
Containers for J2EE Services Guide for full details.

Table A–4 Options for Application Deployment (Cont.)

Option Description

Standalone OC4J Command-Line Options and Properties

Additional Information A-39

Table A–5 Options for Web Site Administration

-site options Description

 -site -add Installs a new Web site. Supply information with the following
subswitches:

-host hostname: The host where the web site exists.

-port portnum: The Web site port.

-display-name name: The name of the Web site.

-virtual-hosts virtual_hosts: The virtual hosts of the
Web site.

-secure true|false: The value is true if the Web site is
secure, otherwise the value is false.

-factory factory_name: The name of the
SSLServerSocketFactory class if you are not using the
Java Secure Socket Extension (JSSE). The JSSE defines a
provider interface that other security providers can implement.
Sun Microsystems provides its own implementation in
com.sun.net.ssl.internal.ssl.Provider.

-keystore keystore: The relative or absolute path to a
keystore.

-storepass password: The keystore password.

-provider provider: The provider used if using JSSE,
defaults to com.sun.net.ssl.internal.ssl.Provider.

-needs-client-auth true|false: If set to true, a client
that wants to access a J2EE Web site needs to identify itself
with a digital certificate. If set to false, a client does not need
to identify itself with a digital certificate. The default is false.

-site -remove Removes an existing Web site. Supply the host and port of this
Web site with the following subswitches:

-host hostname: The Web site host to be removed.

-port portnum: The Web site port to be removed.

-site -test Tests an existing Web site. Supply the host and port of the Web
site to be tested with the following subswitches:

-host hostname: The Web site host to be tested.

-port portnum: The Web site port to be tested.

-site -list Lists all existing Web sites.

Standalone OC4J Command-Line Options and Properties

A-40 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

-site -update Updates an existing Web site. Supply information with the
following subswitches:

-oldHost hostname: The old host of the Web site. You can
change the Web site host and port with the "old" and "new"
subswitches.

-oldPort portnum: The old port of the Web site.

-newHost hostname: The new host of the Web site.

-newPort portnum: The new port of the Web site.

-display-name name: The new display name of the Web
site.

-virtual-hosts vhosts: The new virtual hosts of the Web
site.

-secure true|false: If set to true, the Web site is secure. If
set to false, the Web site is not secure. The default is false.

-factory classname: The new name of the
SSLServerSocketFactory class if you are not using JSSE.

-keystore path: The new relative or absolute path to a
keystore.

-storepass password: The new keystore password.

-provider provider: The new provider used if you are not
using JSSE.

-needs-client-auth true|false: If set to true, a client
that wants to access a J2EE Web site needs to identify itself
with a digital certificate. If set to false, a client does not need
to identify itself with a digital certificate. The default is false.

Table A–5 Options for Web Site Administration (Cont.)

-site options Description

Standalone OC4J Command-Line Options and Properties

Additional Information A-41

DataSource And Application Options
Table A–6 lists the -application option subswitches for the admin.jar
command-line tool. The -application takes in a name of an application before
the subswitch command. This name can be one of the following:

■ The global application name, installed originally as default, specified in the
name attribute of the <global-application> element in the server.xml
file.

■ A specific application name defined within an <application> element in the
server.xml file.

This name, while a string, should not be enclosed in quotes. For example, the
following command lists all data source objects defined:

java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port admin_id
 admin_password -application default -listDataSource

Table A–6 Options For Application And Data Source Management

-application Option Description

-application name
-restart

Restarts the application. This triggers auto-deployment if
enabled and a file has been touched.

-application name
-addUser username
password

Adds a user to the security file (principals.xml).

-application name
-dataSourceInfo

Retrieves the dynamic usage information about the installed
DataSource objects.

-application name
-listDataSource

Retrieves the statically configured information about each
installed DataSource object.

-application name
-testDataSource

Tests an existing DataSource. Supply information with the
following subswitches:

-location location: The namespace location for the
DataSource. For example, jdbc/DefaultDS. Required.

-username username: The username you use to login along
with a password. Optional.

-password password: The password to log in with.
Optional.

Standalone OC4J Command-Line Options and Properties

A-42 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

-application name
-installDataSource

Installs a new DataSource. Supply information within the
following subswitches:

-jar JARfile: The JAR file containing the driver that is to be
added to the library of the server.

-url URL: The JDBC database URL.

-location JNDIlocation: The namespace location for the
raw source. For example, "jdbc/DefaultPooledDS".
Required.

-pooledLocation JNDIlocation: The namespace location
for the pooled source. For example,
"jdbc/DefaultPooledDS".

-xaLocation JNDIlocation: The namespace location for
the XA source. For example, "jdbc/xa/DefaultXADS".
Requied if -ejbLocation is specified.

-ejbLocation JNDIlocation: The namespace location for
the container-managed transactional data source. This is the
only data source that can perform global JTA transactions. For
example, "jdbc/DefaultDS".

-username username: The username to log in with.

-password password: The password to log in with.

-connectionDriver driverClass: The JDBC database
driver class.

-classname DSclass: The data source class name, such as
com.evermind.sql.DriverManagerDataSource.
Required.

-sourceLocation jndiDS: The underlying data source of
this specialized data source.

-xaSourceLocation jndiXADS: The underlying XA data
source of this specialized data source.

-application name
-removeDataSource

Remove an existing DataSource. Supply information with
the following subswitches:

-location JNDIlocation: The namespace location for the
DataSource. For example, jdbc/DefaultDS. Required.

Table A–6 Options For Application And Data Source Management (Cont.)

-application Option Description

Standalone OC4J Command-Line Options and Properties

Additional Information A-43

-application name
-updateDataSource

Update an existing DataSource. Supply information with the
following subswitches:

-oldLocation JNDIlocation: The old namespace location
for the DataSource. For example, jdbc/DefaultDS.
Required.

-newLocation JNDIlocation: The new namespace
location for the DataSource. For example,
jdbc/DefaultDS.

-jar JAR: The JAR file containing the driver to add to the
library of the server.

-url URL: The JDBC database URL.

-pooledLocation JNDIlocation: The namespace location
for the pooled source. For example,
jdbc/DefaultPooledDS.

-xaLocation JNDIlocation: The namespace location for
the XA DataSource. For example, jdbc/xa/DefaultXADS.
Required if -ejbLocation is specified.

-ejbLocation JNDIlocation: The namespace location for
the data source for container-managed transactions. This is the
only data source that can perform global JTA transactions. For
example, jdbc/DefaultDS.

-username username: The username you use to login.

-password password: The password you use to login.

-connectionDriver driverClass: The JDBC database
driver class. For example, com.mydb.Driver.

-className dsClass: The data source class name. For
example,
com.evermind.sql.DriverManagerDataSource.

-sourceLocation jndiDS: The underlying data source of
this specialized data source.

-xaSourceLocation jndiXADS: The underlying XA data
source of this specialized data source.

Table A–6 Options For Application And Data Source Management (Cont.)

-application Option Description

OC4J System Properties

A-44 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

OC4J System Properties
You can set system properties on the OC4J command-line before startup. If OC4J is
running, you must restart the instance for these to take effect. All system properties
are prefaced with a -D. For example, -DGenerateIIOP.

■ Table A–7 details general system properties.

■ Table A–8 details debugging properties.

Table A–7 -D General System Properties for OC4J

-D Option Description

java.home Sets the JAVA_HOME environment variable

java.ext.dirs Sets the external directories to be searched for classes when
compiling.

java.io.tmpdir=
new_tmp_dir

Default is /tmp/var. To change the temporary directory
for the deployment wizard.

The deployment wizard uses 20 MB in swap space of the
temp directory for storing information during the
deployment process. At completion, the deployment
wizard cleans up the temp directory of its additional files.
However, if the wizard is interrupted, it may not have the
time or opportunity to clean up the temp directory. Thus,
you must clean up any additional deployment files from
this directory yourself. If you do not, this directory may fill
up, which will disable any further deployment. If you
receive an Out of Memory error, check for space available
in the temp directory.

GenerateIIOP=
true/false

Default is false. If true, enables IIOP stub generation.

KeepIIOPCode=
true/false

Default is false. If true, keeps the generated IIOP stub/tie code.

oracle.arraylist.deepCopy=
true/false

If true, then while cloning an array list, a deep copy is performed.
If false, a shallow copy is performed for the array list. Default:
true

OC4J System Properties

Additional Information A-45

dedicated.rmicontext=
true/false

Default is false. This replaces the deprecated
dedicated.connection setting. When two or more
clients in the same process retrieve an InitialContext,
OC4J returns a cached context. Thus, each client receives
the same InitialContext, which is assigned to the
process. Server lookup, which results in server load
balancing, happens only if the client retrieves its own
InitialContext. If you set
dedicated.rmicontext=true, then each client receives
its own InitialContext instead of a shared context.
When each client has its own InitialContext, then the
clients can be load balanced.

This parameter is for the client. You can also set this in the
JNDI properties.

oracle.mdb.fastUndeploy=<int> The oracle.mdb.fastUndeploy system property
enables you to shutdown OC4J cleanly when you are
running MDBs in a Windows environment or when the
backend database is running on a Windows environment.
Normally, when you use an MDB, it is blocked in a receive
state waiting for incoming messages. However, if you
shutdown OC4J while the MDB is in a wait state in a
Windows environment, then the OC4J instance cannot be
stopped and the applications are not undeployed since the
MDB is blocked. However, you can modify the behavior of
the MDB in this environment by setting the
oracle.mdb.fastUndeploy system property. If you set
this property to an integer, then when the MDB is not
processing incoming messages and in a wait state, the OC4J
container goes out to the database (requiring a database
round-trip) and polls to see if the session is shut down. The
integer denotes the number of seconds the system waits to
poll the database. This can be expensive for performance. If
you set this property to 60 (seconds), then every 60
seconds, OC4J is checking the database. If you do not set
this property and you try to shutdown OC4J using
CTRL-C, the OC4J process will hang for at least 2.5 hours.

Table A–7 -D General System Properties for OC4J (Cont.)

-D Option Description

OC4J System Properties

A-46 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

oracle.dms.sensors=[none, normal,
heavy, all].

You can set the value for Oracle Application Server built-in
performance metrics to the following: none (off), normal
(medium amount of metrics), heavy (high number of
metrics), or all (every possible metric). The default is
normal.This parameter should be set on the OC4J server.
The previous method for turning on these performance
metrics, oracle.dms.gate=true/false, is replaced by
the oracle.dms.sensors variable. However, if you still use
oracle.dms.gate, then setting this variable to false is
equivalent to setting oracle.dms.sensors=none.

associateUsingThirdTable=
true/false

For container-managed relationships in entity beans, you
can designate if a third database table is used to manage
the relationship. Set to false if you do not want a third
association table. Default is false. See the "Entity
Relationship Mapping" chapter in the Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s
Guide for more information.

Table A–7 -D General System Properties for OC4J (Cont.)

-D Option Description

OC4J System Properties

Additional Information A-47

DefineColumnType=
true/false

DefineColumnType=true/false. The default is false.
Set this to true if you are using an Oracle JDBC driver that
is prior to 9.2. For these drivers, setting this variable to true
avoids a round-trip when executing a select over the Oracle
JDBC driver. This parameter should be set on the OC4J
server.

When you change the value of this option and restart OC4J,
it is only valid for applications deployed after the change.
Any applications deployed before the change are not
affected.

When true, the DefineColumnType extension saves a
round trip to the database that would otherwise be
necessary to describe the table. When the Oracle JDBC
driver performs a query, it first uses a round trip to a
database to determine the types that it should use for the
columns of the result set. Then, when JDBC receives data
from the query, it converts the data, as necessary, as it
populates the result set. When you specify column types
for a query with the DefineColumnType extension set to
true, you avoid the first round trip to the Oracle database.
The server, which is optimized to do so, performs any
necessary type conversions.

Table A–8 -D System Properties for Debugging

-D Debug System Properties Description

KeepWrapperCode Default: false. If true, keeps and debugs the generated wrapper code.

DBEntityHomeDebug Default: false. If true, displays entity bean home interface debug messages.

DBEntityObjectDebug Default: false. If true, displays entity bean object debug messages.

DBEntityWrapperDebug Default: false. If true, displays entity bean pool debug messages.

iiop.runtime.debug Default: false. If true, outputs IIOP debug messages.

NativeJDBCDebug Default: false. Native JDBC debug messages.

Table A–7 -D General System Properties for OC4J (Cont.)

-D Option Description

OC4J System Properties

A-48 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

For more information about debugging properties, see "OC4J Debugging" on
page 2-31.

http.request.debug Default: false. If true, provides information about each HTTP request
directed to standard output.

http.redirect.debug Default: false. If true, provides information about each HTTP redirects to
standard output.

http.method.trace.allow Default: false. If true, turns on the trace HTTP method.

http.session.debug Default: false. If true, provides information about HTTP session events

http.error.debug Default: false. If true, prints all HTTP errors

http.virtualdirectory.debug Default:false. If true, print the enforced virtual directory mappings upon
startup.

debug.http.contentLength Default: false. If true, print explicit content-length calls as well as extra
sendError information.

jms.debug Default: false. JMS debug messages.

multicast.debug Default: false. Multicast debug messages.

rmi.debug Default: false. RMI debug messages.

transaction.debug Default: false. If true, prints debug messages for JTA events.

rmi.verbose Default: false. RMI verbose information.

datasource.verbose Default: false. If true, provides verbose information on creation of data
source and connections using data sources and connections released to the
pool, and so on,

jdbc.debug Default: false. If true, provides very verbose information when JDBC calls
are made

ws.debug Default:false. If true, turns on OracleAS Web Services debugging

javax.net.debug=[ssl|all] If ssl, turns on SSL debugging. If all, turns on SSL debugging with verbose
messages.

Table A–8 -D System Properties for Debugging (Cont.)

-D Debug System Properties Description

Configuration and Deployment Examples

Additional Information A-49

Configuration and Deployment Examples
The following examples show how to configure and deploy a J2EE application
within OC4J. See "Configuring the FAQ Application Demo" on page 1-11 to learn
how to modify the XML configuration files for the FAQ application demo.

■ J2EE Application XML Configuration Example

■ Deploying Example

J2EE Application XML Configuration Example
In this example, the myapp application contains a Java client, an EJB assembled into
a JAR file, servlets and JSPs assembled into a WAR file, and an EAR file that
contains both the EJB JAR file and the Web application WAR file. The tree structure
showing the location of all the XML configuration files, the Java class files, and the
JSP files is shown in Figure A–1. Notice that you can separate all the configuration
files into logical directories within the application directory.

Configuration and Deployment Examples

A-50 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Figure A–1 Application EAR Structure

application.xml Example
The myapp/META-INF/application.xml file lists the EJB JAR and Web
application WAR file that is contained in the EAR file using the <module>
elements.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.3//EN"
"http://java.sun.com/j2ee/dtds/application_1_3.dtd">
<application>
 <display-name>myapp j2ee application</display-name>
 <description>
 A sample J2EE application that uses a Container Managed
 Entity Bean and JSPs for a client.
 </description>

myapp.ear

META-INF/
application.xml

myapp-ejb.JAR

META-INF/
ejb-jar.xml

myapp-web.WAR

index.html

WEB-INF/
web.xml
classes/

myapp-client.JAR

TemplateClient.class
META-INF/

application-client.xml

TemplateServlet.class

orion-application-client.xml

Template.class
TemplateBean.class
TemplateHome.class

add.jsp
delete.jsp
edit.jsp
list.jsp
serv.jsp

Configuration and Deployment Examples

Additional Information A-51

 <module>
 <ejb>myapp-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>myapp-web.war</web-uri>
 <context-root>/myapp</context-root>
 </web>
 </module>
</application>

web.xml Example
The myapp/web/WEB-INF/web.xml file contains the class definitions for EJBs,
servlets, and JSPs that are executed within the Web site. The myapp Web module
specifies the following in its descriptor:

■ The default page to be displayed for the application’s root context as specified
using the admin.jar bind command (http://oc4j_host:port/myapp)

■ Where to find the stubs for the EJB home and remote interfaces

■ The JNDI name for the EJB

■ The included servlets and where to find each servlet class

■ How servlets are mapped to a subcontext using the <servlet-mapping>
element (/template) off of the application root context

The Web server looks for the following:

■ All servlet classes under WEB-INF/classes/<package>.<class>.

■ All HTML and JSP from the root of the WAR file that is pointed to by
<web-app name="<warfile.war>"> in the web-site.xml file, which is
packaged in the deployed corresponding application EAR file.

■ OC4J compiles each JSP from .java into .class the first time it is used and
caches it for subsequent use.

<web-app>
 <display-name>myapp web application</display-name>
 <description>
 Web module that contains an HTML welcome page, and 4 JSP’s.
 </description>
 <welcome-file-list>

Configuration and Deployment Examples

A-52 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 <ejb-ref>
 <ejb-ref-name>TemplateBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>TemplateHome</home>
 <remote>Template</remote>
 </ejb-ref>
 <servlet>
 <servlet-name>template</servlet-name>
 <servlet-class>TemplateServlet</servlet-class>
 <init-param>
 <param-name>length</param-name>
 <param-value>1</param-value>
 </init-param>
 </servlet>
</web-app>

ejb-jar.xml Example
The ejb-jar.xml file contains the definitions for a container-managed persistent
EJB. The myapp EJB deployment descriptor contains the following:

■ The entity bean uses container-managed persistence.

■ The primary key is stored in a table. This descriptor defines the type and fields
of the primary key.

■ The table name is TemplateBean, and columns are named according to fields
in the ejb-jar.xml descriptor and type mappings in
j2ee/home/config/database-schemas/oracle.xml.

■ The bean uses JDBC to access databases, as specified in data-source.xml, by
ejb-location or by default-data-source in
orion-application.xml.

<ejb-jar>
 <display-name>myapp</display-name>
 <description>
 An EJB app containing only one Container Managed Persistence
 Entity Bean
 </description>
 <enterprise-beans>
 <entity>

Configuration and Deployment Examples

Additional Information A-53

 <description>
 template bean populates a generic template table.
 </description>
 <display-name>TemplateBean</display-name>
 <ejb-name>TemplateBean</ejb-name>
 <home>TemplateHome</home>
 <remote>Template</remote>
 <ejb-class>TemplateBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>TemplateBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 <security-role>
 <description>Users</description>
 <role-name>users</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

server.xml Addition
When you deploy the application using the admin.jar -deploy option, this adds
the location of the application EAR file to the server.xml file. This causes the
application to be started every time that OC4J is started. If you do not want the
application to be started with OC4J, change the auto-start attribute to FALSE.

Configuration and Deployment Examples

A-54 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

<application name="myapp" path="../myapp/myapp.ear"
auto-start="true" />

where

■ The name attribute is the name of the application.

■ The path indicates the directory and filename for the EAR file.

■ The auto-start attribute indicates if this application should be automatically
started each time OC4J is started.

http-web-site.xml Addition
You must designate the WAR file name and define the root context for the Web
application, which was deployed in the WAR file. You can either bind the Web
context through the admin.jar -bindWebApp option or edit the
http-web-site.xml file and add the following:

<web-app application="myapp" name="myapp-web" root="/myapp" />

■ The name attribute is the name of the WAR file, without the .WAR extension.

■ The root attribute defines the root context for the application off of the Web
site. For example, if you defined your Web site as
"http://oc4j_host:8888", then to initiate the application, you would point
your browser at "http://oc4j_host:8888/myapp".

Client Example
The application client that accesses the myapp application has a descriptor, which
describes where to find the EJB stubs (home and remote interface) and its JNDI
name.

The client XML configuration is contained in two files:
application-client.xml and orion-application-client.xml.

The application-client.xml file contains a reference for an EJB, as follows:

<application-client>
<display-name>TemplateBean</display-name>

Note: If you set auto-start to FALSE, you can manually start
the application using the admin.jar tool or it is automatically
started when a client requests the application.

Configuration and Deployment Examples

Additional Information A-55

<ejb-ref>
<ejb-ref-name>TemplateBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>mTemplateHome</home>
<remote>Template</remote>

</ejb-ref>
</application-client>

The orion-application-client.xml file maps the EJB reference logical name
to the JNDI name for the EJB. For example, this file maps the <ejb-ref-name>
element, "TemplateBean," defined in the application-client.xml, to the
JNDI name, "myapp/myapp-ejb/TemplateBean", as follows:

<orion-application-client>
<ejb-ref-mapping name="TemplateBean"

location="myapp/myapp-ejb/TemplateBean" />
</orion-application-client>

JNDI Properties for the Client Set the JNDI properties for a regular client so it finds the
initial JNDI context factory in one of the following manners:

■ Set the JNDI properties within a Hashtable, then pass the properties to
javax.naming.InitialContext.

■ Set the JNDI properties within a jndi.properties file.

If you provide the JNDI properties in the jndi.properties file, package the
properties in myapp-client.jar to ensure that it is in the CLASSPATH.

jndi.properties:

java.naming.factory.initial=com.evermind.server.ApplicationClientInitialCont
extFactory
java.naming.provider.url=ormi://oc4j_host:23791/myapp
java.naming.security.principal=admin
java.naming.security.credentials=welcome

Deploying Example
After developing your J2EE application, assemble the different modules of your
J2EE application (EJB, Web, and client) into an EAR file. This section provides an
example of a J2EE application with a EJB, Web, and client sections.

To deploy this application from the client using the admin.jar command-line tool,
perform the following from the myapp directory. Notice that it defines the EAR file

Configuration and Deployment Examples

A-56 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

in the -file option and the target path for copying the EAR file into in the
-targetPath option. Because the path where the EAR resides and the target path
is the same, no copying occurs.

% java -jar $J2EE_HOME/admin.jar ormi://oc4j_host admin welcome
-deploy -file ./myapp.ear -deploymentName myapp

Auto-deploying myapp (New server version detected)...
Auto-deploying myapp-ejb.jar (ejb-jar.xml had been touched since the
previous deployment)... done.
Auto-deploying myapp web application (New server version detected)...

EJB Module
When you deployed the EJB module, the following messages were received:

Auto-deploying myapp (New server version detected)...
Auto-creating table: create table TemplateBean (col_1 NUMBER not null
primary key, col_2 VARCHAR2(255) null, col_3 FLOAT null)
Auto-deploying myapp-ejb.jar (Class 'myapp.myapp-ejb.Template' had been
updated)... done.

OC4J created the TemplateBean table for you; however, you must first install a
data source. You can use the admin.jar command-line tool to install the data
source, as follows:

% java -jar admin.jar ormi://oc4j_host admin welcome
-installDataSource -jar $ORACLE_HOME/jdbc/classes12.jar
-url jdbc:oracle:thin:@oc4j_host:1521:orcl
-connectionDriver oracle.jdbc.driver.OracleDriver
-location jdbc/DefaultOracleDS -username scott -password tiger

Web Module—Servlet and JSP Calling EJBs
To bind the Web component (WAR file) of a J2EE application (EAR file) on a Web
site, do the following:

% java -jar admin.jar ormi://oc4j_host admin welcome
-bindWebApp myapp myapp-web http-web-site /myapp

This adds the following to http-web-site.xml:

Note: The EJB JAR file is immediately unpacked; the WAR file is
unpacked when you navigate to /myapp on the Web server.

Configuration and Deployment Examples

Additional Information A-57

<web-app application="myapp" name="myapp-web" root="/myapp" />

Client Module—Standalone Java Client Invoking EJBs
Package your client module in a JAR file with the descriptor
META-INF/application-client.xml.

Manifest File for the Client Package the client in a runable JAR with a manifest that has
the main class to run and required CLASSPATH, as shown below. Check that the
relative paths in this file are correct. Verify that you point to the relative location of
the required OC4J class libraries.

manifest.mf

Manifest-Version: 1.0
Main-Class: myapp.myapp-client.TemplateClient
Name: "TemplateClient"
Created-By: 1.2 (Sun Microsystems Inc.)
Implementation-Vendor: "Oracle"
Class-Path: ../../../j2ee/home/oc4J.jar ../../../j2ee/home/lib/jndi.jar
../../../j2ee/home/lib/ejb.jar ../myapp-ejb.jar

Executing the Client To execute the client, perform the following:

% java -jar myapp-client.jar
TemplateClient.main(): start
Enter integer value for col_1: 1
Enter string value for col_2: BuyME
Enter float value for col_3: 99.9
Record added through bean

Configuration and Deployment Examples

A-58 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Third Party Licenses B-1

B
Third Party Licenses

This appendix includes a description of the Third Party Licenses for all the third
party products included with Oracle Application Server.

Third-Party Licenses

B-2 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Third-Party Licenses
Topics include:

■ Apache HTTP Server

■ Apache JServ

Apache HTTP Server
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *

Third-Party Licenses

Third Party Licenses B-3

 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */

Apache JServ
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

Third-Party Licenses

B-4 Oracle Application Server Containers for J2EE Stand Alone User’s Guide

Apache JServ Public License
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

■ Redistribution of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

■ Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

■ All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

■ The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

■ Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

■ Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA
APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Index-1

Index
Symbols
<access-log> element, 2-28
<alt-dd> element, A-18
<application> element, 1-22, 6-23, A-10, A-18
<application-client> element, A-28
<application-server> element, A-9
<argument> element, A-21
<arguments> element, A-21
<callback-handler> element, A-28
<client-module> element, A-21
<commit-class> element, A-22
<commit-coordinator> element, A-22
<compiler> element, A-11
<connector> element, A-19
<connectors> element, A-22
<context-attribute> element, A-32
<context-root> element, A-19
<data-sources> element, A-22
<description> element, A-22, A-28
<display-name> element, A-19, A-29
<ejb> element, 6-21, A-19
<ejb-link> element, A-29
<ejb-module> element, A-22
<ejb-ref> element, 6-17, 7-7, A-29
<ejb-ref-mapping> element, A-32
<ejb-ref-name> element, A-29
<ejb-ref-type> element, A-29
<env-entry> element, A-29
<env-entry-mapping> element, A-32
<env-entry-name> element, A-29
<env-entry-type> element, A-29
<env-entry-value> element, A-30
<execution-order> element, A-11

<file> element, 2-28, A-15, A-22
<global-application> element, A-11
<global-thread-pool> element, 2-23, A-12
<global-web-app-config> element, A-13
<group> element, A-22
<home> element, A-30
<icon> element, A-19, A-30
<init-library> element, 2-19, 2-20, 2-21, A-13
<init-param> element, A-13
<java> element, 6-21, A-19
<javacache-config> element, A-13
<java-compiler> element, A-11, A-13
<jazn> element, 7-13, A-23, A-26
<jazn-web-app> element, A-23
<jms-config> element, A-15
<large-icon> element, A-19, A-30
<library> element, 2-10, A-24
<log> element, 2-28, 2-29, 2-30, A-15, A-24
<lookup-context> element, A-32
<mail> element, A-15, A-25
<mail-session> element, A-25
<max-http-connections> element, A-16
<method-permission> element, 7-9
<module> element, 6-20, A-19
<namespace-access> element, A-25
<namespace-resource> element, A-25
<odl> element, 2-30, A-15, A-24
<odl-access-log> element, 2-30
<orion-application> element, A-20
<orion-application-client> element, A-31
<password-manager> element, A-25
<persistence> element, A-26
<principals> element, A-26
<property> element, A-26

Index-2

<read-access> element, A-26
<remote> element, A-30
<res-auth> element, A-30
<resource-env-ref> element, A-30
<resource-env-ref-mapping> element, A-33
<resource-env-ref-name> element, A-31
<resource-env-ref-type> element, A-31
<resource-provider> element, A-26
<resource-ref> element, A-31
<resource-ref-mapping> element, A-33
<res-ref-name> element, A-31
<res-sharing-scope> element, A-31
<res-type> element, A-31
<rmi-config> element, A-16
<role-name> element, A-20
<security-role> element, 7-9, A-20
<security-role-mapping> element, 7-9, A-27
<sep-config> element, A-17
<session-tracking> element, 7-23
<sfsb-config> element, A-17
<shutdown-class> element, 2-21, A-17
<shutdown-classes> element, 2-21, A-17
<small-icon> element, A-20, A-31
<ssl-config> element, 7-22
<startup-class> element, 2-18, A-17
<startup-classes> element, 2-18, A-17
<transaction-config> element, A-18
<user> element, A-27
<user-manager> element, 7-13, 7-17, A-27
<web> element, 6-21, A-20
<web-app> element, 7-22
<web-module> element, A-28
<web-site> element, 7-21, A-18
<web-uri> element, A-20
<write-access> element, A-28

A
administration, 1-6
admin.jar command, 1-20
admin.jar tool, A-34

administration, 1-6
bind Web context, 1-16, 1-21
deploying, 1-8, 1-20, 6-22
options, A-35

register applications, 1-16
restarting, 1-7
shut down, 1-7
undeployment, 1-23
usage example, A-56

ANT, 1-18
Apache

Oracle HTTP Server, 1-3
application

binding, 1-21
deployment, 1-15, 1-19
example, 1-11
registration, 1-15
undeployment, 1-23

ApplicationClientInitialContextFactory, 7-7
application-client.xml file

element description, A-28
example, A-55

application.xml file, 1-17, 6-20, 7-13, 7-17
authentication, 7-3
designating data-sources.xml, 3-2
element description, A-18
example, 6-21, A-50
overview, 6-20
security, 7-11

archiving EJBs, 6-20
EAR file, 6-22

associateUsingThirdTable property, A-46
authentication, 7-2, 7-3
authorization, 7-2, 7-8
automatic deployment

disable, 1-16
enable, 1-7, A-9

B
bean

creating, 6-3
implementation, 6-8
removal, 6-10

C
certificate authorities (SSL), 7-19
certificates (SSL), 7-19

Index-3

check-for-updates attribute, 1-7, 1-14, 1-16, 1-20,
A-9, A-37

com.evermind.server.RMIInitialContextFactory
class, 7-7

command-line options, A-44
performance settings, 2-22

compiler
specifying, A-13

confidentiality
definition, 7-3

configuration
application.xml file, 1-17
data-sources.xml file, 1-16
default, 1-3
http-web-site.xml file, 1-15, 1-17, 1-18
server.xml file, 1-15, 1-17, 1-18, 1-21

cookie domain, 7-23
cookie-domain attribute, 7-23
create method, 6-10

EJBHome interface, 6-4
CreateException, 6-5, 6-6
createUser method, 7-11

D
DAS, 7-13
data source

default, 1-13, 3-2
definition, 3-2
emulated, 1-13, 3-2
introduction, 3-1
location of XML file, 3-2
retrieving connection, 3-4

database
retrieving connection, 3-4

DataSource interface, 3-4, 7-18
data-sources.xml file, 1-16

designating location, 3-2
pre-installed definitions, 1-13, 3-2

DataSourceUserManager class, 7-17
datasource.verbose property, A-48
DBEntityHomeDebug property, A-47
DBEntityObjectDebug property, A-47
DBEntityWrapperDebug property, A-47
debugging, 2-31 to 2-34

options, 2-32
debug.http.contentLength property, A-48
dedicated.connection setting, 2-22, A-45
dedicated.rmicontext property, A-45
dedicated.rmicontext setting, 2-22
default-web-app directory

automatic deployment, 1-8
default-web-site.xml file

example, A-54
DefineColumnType property, 2-22, A-47
Delegated Administrative Service, see DAS
deployment, 1-15

applications, 1-19
automatic, 1-8
command-line tool, 1-20, 6-22
example, 1-17
verification, 1-23

deployment descriptor, 6-18
destroy method, 4-12
development

recommendations, 1-9
DNS round-robin, 6-17
DTD file, 6-18

E
EAR file, 6-1

creation, 1-20, 6-22
structure, 1-19
used in deployment, 1-19

EJB
archive, 6-20
authentication, 7-3
creating, 6-2, 6-3, 6-8
deployment, 1-19, 1-20, 6-22

command-line tool, 1-20, 6-22
manual, 1-22, 6-23

deployment descriptor, 6-18
development suggestions, 6-2
home interface, 6-4
interact with JSPs, 5-2
local interface, 6-7
remote interface, 6-6

ejbCreate method, 6-4
EJBException, 6-5, 6-6, 6-7

Index-4

EJBHome interface, 6-4, 6-5
ejb-jar.xml file, 6-18

example, A-52
EJBLocalHome interface, 6-4, 6-6
EJBLocalObject interface, 6-4, 6-7
EJBObject interface, 6-4, 6-6
enable-passivation attribute, A-17
Enterprise Archive file, see EAR file
Enterprise JavaBeans, see EJB
EntityBean interface, 6-4
environment

modifications, 1-18

F
front-end listener

Oracle HTTP Server, 1-3

G
GenerateIIOP property, A-44
getConnection method, 3-4
getGroup method, 7-11
getUser method, 7-11

H
hashtable, A-55
home interface

creating, 6-4
lookup, 6-10

HTTP method
trace, 2-32, A-48

http.error.debug property, A-48
http.method.trace.allow property, 2-32, A-48
http.redirect.debug property, A-48
http.request.debug property, 2-32, A-48
HTTPS, 7-19

client-authentication, 7-27
http.session.debug property, A-48
http.virtualdirectory.debug property, A-48
http-web-site.xml file, 1-15, 1-17, 1-18

bind Web context, 1-15

I
identities, 7-2
iiop.runtime.debug property, A-47
InitialContext, 2-22, A-45

J
J2EE

definition, 1-2
J2EE_HOME environment variable, 1-4, 1-6
jar archiving command, 6-20
JAVA_HOME variable, 1-18
JavaBeans

JSP code to call a JavaBean, 5-7
java.ext.dirs property, A-14, A-44
java.home property, A-44
java.io.tmpdir property, A-44
javax.net.debug property, 7-29, A-48
jazn-data.xml file, 7-3, 7-10, 7-11, 7-12
JAZNUserManager class, 7-12
JDBC

retrieving connection, 3-4
jdbc.debug property, A-48
JDK, 1-2
Jikes, A-11
JMS, A-4
jms.debug property, A-48
JNDI

lookup, 6-10
lookup of data source, 3-4

JSP pages
code to call a JavaBean, 5-7
code to use a tag library, 5-11
default deployment, 1-8
deployment, 1-19
interact with EJBs, 5-2
overview, 5-2
overview of Oracle value-added features, 5-5
placing tag library files into OC4J directory

structure, 5-12
running in OC4J, 5-6
simple example code, 5-2
steps in using a tag library, 5-11

JSP technology

Index-5

overview, 5-2
JVM, 1-2

K
KeepIIOPCode property, A-44
KeepWrapperCode property, A-47
keys (SSL), 7-19
keystores (SSL), 7-19

L
LDAP, 7-2
LDAP-based provider type, 7-2, 7-12
library

sharing, 2-9
Lightweight Directory Access Protocol, see LDAP
local home interface

example, 6-6
local interface

creating, 6-7
example, 6-7

logging, 2-27 to 2-31
log files, 2-27, 2-29
ODL, 2-29, A-15, A-24
rollover logging, 2-29, A-15, A-24
standard error, 2-31
standard out, 2-31
text, 2-28
XML message format, 2-30

M
mod_ossl, 7-12
mod_osso, 7-12
multicast.debug property, A-48

N
narrowing, 6-10
NativeJDBCDebug property, A-47
needs-client-auth attribute, 7-27

O
OC4J

administration, 1-6
application example, 1-11
command-line options, A-44
restarting, 1-6
setup, 1-3
shut down, 1-7
shutdown class, 2-18
startup, 1-5
startup class, 2-18
system properties, A-44
Windows shutdown, A-45

OC4J Remote Method Invocation, see ORMI
oc4j.jar tool

startup, 1-5
OC4JShutdown interface, 2-21
OC4JStartup interface, 2-18
OID, 7-11, 7-12
Oracle Diagnostic Logging, see logging

ODL
Oracle HTTP Server

front-end listener, 1-3
oracle.dms.gate setting, 2-22, A-46
oracle.dms.sensors setting, 2-22, A-46
oracle.mdb.fastUndeploy property, A-45
orion-application-client.xml file

element description, A-31
example, A-55

orion-application.xml file, 7-13, 7-17
authentication, 7-3
element description, A-20
user manager, 7-11

ORMI, 1-6
Out of Memory error, A-44

P
parent

specifying, 7-6
parent application, 2-17
performance

oracle.dms.sensors setting, 2-22, A-46
performance setting

command-line options, 2-22
dedicated.connection, 2-22, A-45
dedicated.rmicontext, 2-22, A-45

Index-6

DefineColumnType, 2-22, A-47
DNS load balancing option, 6-17
oracle.dms.gate, 2-22, A-46
statement caching, 2-26
task manager granularity, 2-26, A-10
thread pools, 2-23, A-12

performance settings, 2-21
PortableRemoteObject

narrow method, 6-10
postDeploy method, 2-18
postUndeploy method, 2-21
preDeploy method, 2-18
preUndeploy method, 2-21
principals.xml file, 1-6, 7-3, 7-4, 7-11, 7-18
private keys (SSL), 7-19
public keys (SSL), 7-19

R
RAR, 2-13
remote home interface

example, 6-5
remote interface

business methods, 6-10
creating, 6-4, 6-6
example, 6-7

RemoteException, 6-7
remove method, 6-10
Resource Adapter Achieve, see RAR
restarting, 1-6
RMI, A-5
rmi.debug property, A-48
rmi.verbose property, A-48
roles, 7-2
run-as identity, 7-12

S
Secure Socket Layer--see SSL
Secure Sockets Layer, see SSL
security

defined, 7-1
introduction, 7-19
keys and certificates, 7-19
OC4J and OHS configuration, 7-21

using certificates with OC4J and OHS, 7-20
server.xml file, 1-15, 1-17, 1-18, 1-21, 1-22, 6-23

element description, A-8
example, A-53

servlets
default deployment, 1-8
deployment, 1-19

session bean
local home interface, 6-6
remote home interface, 6-5

SessionBean interface
EJB, 6-4

setParent method, 7-18
setStmtCacheSize method, 2-26
sharing libraries, 2-9
shutdown class, 2-21

postUndeploy method, 2-21
preUndeploy method, 2-21

Single Sign-on, see SSO
SSL, 7-3, 7-19

client-authentication, 7-27
SSO, 7-12
standard error

redirection, 2-31
standard out

redirection, 2-31
startup, 1-5
startup class, 2-18 to 2-20

example, 2-20
postDeploy method, 2-18
preDeploy method, 2-18

statement caching
DataSource

statement caching, 2-26
stmt-cache-size attribute, 2-26
system properties, A-44

T
tag libraries

JSP code to use, 5-11
placing support files in OC4J directory

structure, 5-12
steps to use in a JSP page, 5-11

task manager granularity, 2-26, A-10

Index-7

taskmanager-granularity attribute, 2-26, A-10
thread

pooling, 2-23
transaction.debug property, A-48

U
undeployment, 1-23
user manager

definition, 7-2
user repository, 7-8

definition, 7-2
jazn-data.xml, 7-3, 7-10, 7-11, 7-12
OID, 7-11, 7-12
principals.xml, 7-3, 7-4, 7-11, 7-18

UserManager interface, 7-15

W
Web

application deployment, 1-19
binding context, 1-15

Web context
binding, 1-21

web.xml file
example, A-51

Windows
shutdown, A-45

ws.debug property, 2-32, A-48

X
XML-based provider type, 7-2, 7-12
XMLUserManager class, 7-18

Index-8

	Send Us Your Comments
	1 Configuration and Deployment
	Introduction to OC4J Standalone
	OC4J Installation
	Requirements
	Basic Installation
	Testing the Default Configuration

	Starting and Stopping OC4J
	Starting OC4J
	Administering OC4J
	Restarting OC4J

	Shutting Down OC4J
	HTTP and RMI Communication
	Quick Start for JSPs and Servlets

	Creating the Development Directory
	Configuring the FAQ Application Demo
	Environment Setup for FAQ Demo
	Oracle Database

	OC4J System Configuration for FAQ Demo
	Data Source Configuration
	Security Configuration

	Deploy the FAQ Demo
	Deploy Using Automatic Deployment in a Development Environment
	Deploy Using the Admin.JAR Tool in All Environments

	Deployment Details Explained

	Deploying Applications
	Archive Application into an EAR File
	Deployment In a Production Environment Using ADMIN.JAR
	Binding the Web Application in a Production Environment

	Deploy your Application Manually in a Development Environment
	Verifying Deployment

	Undeploying Web Applications

	2 Advanced Configuration, Development, and Deployment
	Overview of OC4J and J2EE XML Files
	XML Configuration File Overview
	XML File Interrelationships

	What Happens When You Deploy?
	Sharing Libraries
	Manually Adding Applications in a Development Environment
	Configuring a Listener
	Configuring J2EE Applications

	Building and Deploying Within a Directory
	OC4J Automatic Deployment for Applications
	Changing XML Files After Deployment
	Designating a Parent of Your Application
	Developing Startup and Shutdown Classes
	OC4J Startup Classes
	OC4J Shutdown Classes

	Setting Performance Options
	Performance Command-Line Options
	Thread Pool Settings
	Statement Caching
	Task Manager Granularity

	Enabling OC4J Logging
	Viewing OC4J System and Application Log Messages
	Text Log Files
	Oracle Diagnostic Logging (ODL) Log Files

	Redirecting Standard Out and Standard Error

	OC4J Debugging
	Servlet Debugging Example

	3 Data Sources Primer
	Introduction
	Definition of Data Sources
	Defining Location of the DataSource XML Configuration File
	Defining Data Sources

	Retrieving a Connection From a Data Source

	4 Servlet Primer
	A Brief Overview of Servlet Technology
	What Is a Servlet?
	Servlet Portability
	The Servlet Container
	Request and Response Objects
	Learning More About Servlets

	Running a Simple Servlet
	Create the Hello World Servlet
	Deploy the Hello World Servlet
	Run the Hello World Servlet
	Automatic Compilation

	Running a Data-Access Servlet
	Create the HTML Form
	Create the GetEmpInfo Servlet
	Deploy GetEmpInfo and the HTML Page
	Run GetEmpInfo

	5 JSP Primer
	A Brief Overview of JavaServer Pages Technology
	What Is JavaServer Pages Technology?
	JSP Translation and Runtime Flow
	Key JSP Advantages
	Overview of Oracle Value-Added Features for JSP Pages

	Running a Simple JSP Page
	Create and Deploy welcomeuser.jsp
	Run welcomeuser.jsp

	Running a JSP Page That Invokes a JavaBean
	Create the JSP: usebean.jsp
	Create the JavaBean: NameBean.java
	Deploy usebean.jsp and Namebean.java
	Run usebean.jsp

	Running a JSP Page That Uses Custom Tags
	Create the JSP Page: sqltagquery.jsp
	Files for Tag Library Support
	Deploy sqltagquery.jsp
	Run sqltagquery.jsp

	6 EJB Primer
	Developing EJBs
	Creating the Development Directory
	Implementing the Enterprise JavaBeans
	Creating the Home Interfaces
	Creating the Component Interfaces
	Implementing the Bean

	Accessing the EJB
	Setting JNDI Properties
	Using the Initial Context Factory Classes

	Creating the Deployment Descriptor
	Archiving the EJB Application

	Preparing the EJB Application for Assembly
	Modifying Application.xml
	Creating the EAR File

	Deploying the Enterprise Application to OC4J
	Using ADMIN.JAR to Modify SERVER.XML
	Updating SERVER.XML Manually
	Verifying Deployment

	7 Security
	Overview of Security Functions
	Authentication
	Specifying Users and Groups
	Example: Specifying Users and Groups in jazn-data.xml
	Example: Specifying Users and Groups in principals.xml

	Authenticating HTTP Clients
	Authenticating EJB Clients
	Setting JNDI Properties
	Using the Initial Context Factory Classes

	Authorization
	Specifying Logical Roles in a J2EE Application
	Mapping Logical Roles to Users and Groups

	Plugging In a User Manager
	Using the JAZNUserManager Class
	Using the JAZNUserManager Class with the LDAP-Based Provider Type
	Using the JAZNUserManager Class with the XML-Based Provider Type

	Using the XMLUserManager Class
	Creating Your Own User Manager

	Confidentiality Through SSL
	Overview of Using SSL for OC4J Standalone
	Overview of SSL Keys and Certificates
	Using Certificates with OC4J Standalone

	Configuration of OC4J for SSL
	Requesting Client Authentication with OC4J Standalone

	HTTPS Common Problems and Solutions
	General SSL Debugging

	A Additional Information
	Description of XML File Contents
	OC4J Configuration XML Files
	server.xml
	http-web-site.xml
	jazn-data.xml
	principals.xml
	data-sources.xml
	jms.xml
	rmi.xml

	J2EE Deployment XML Files
	The J2EE application.xml File
	The OC4J-Specific orion-application.xml File
	The J2EE ejb-jar.xml File
	The OC4J-Specific orion-ejb-jar.xml File
	The J2EE web.xml File
	The OC4J-Specific orion-web.xml File
	The J2EE application-client.xml File
	The OC4J-Specific orion-application-client.xml File

	Elements in the server.xml File
	Configure OC4J
	Reference Other Configuration Files
	<application-server> Element Description
	Elements Contained Within <application-server>

	Elements in the application.xml File
	<application> Element Description
	Elements Contained Within <application>

	Elements in the orion-application.xml File
	<orion-application> Element Description
	Elements Contained Within <orion-application>

	Elements in the application-client.xml File
	<application-client> Element Description
	<application-client>
	Elements Contained Within <application-client>

	Elements in the orion-application-client.xml File
	<orion-application-client> Element Description
	Elements Contained Within <orion-application-client>

	Standalone OC4J Command-Line Options and Properties
	Options for the OC4J Server JAR
	Options for the OC4J Administration Management JAR
	General OC4J Administration
	Application Deployment
	Adding Web Sites
	DataSource And Application Options

	OC4J System Properties
	Configuration and Deployment Examples
	J2EE Application XML Configuration Example
	application.xml Example
	web.xml Example
	ejb-jar.xml Example
	server.xml Addition
	http-web-site.xml Addition
	Client Example
	Deploying Example
	EJB Module
	Web Module—Servlet and JSP Calling EJBs
	Client Module—Standalone Java Client Invoking EJBs

	B Third Party Licenses
	Third-Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

